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ABSTRACT 

Citrus is one of the important economic crops, with a vast planting area and complex 
terrain and environmental conditions. The growth cycle of citrus is long, and it is prone to a 
wide variety of diseases and pests. If the types of diseases and pests cannot be accurately 
identified in a timely manner to take corresponding control measures, it will seriously affect 
the yield and quality of citrus. This study aims to improve the detection accuracy of leaf 
diseases and pests, reduce the computational scale of the model, and enhance its deployability. 
A lightweight disease and pest detection model based on the improved YOLOv8 is proposed, 
and a disease and pest dataset considering different environmental conditions is established. 
Firstly, the convolutional module (Conv) in the neck network of YOLOv8 is replaced by 
GSConv, and the C2f module is replaced by VoV-GSCSP, forming a Slim-neck architecture, 
which reduces the computational complexity of the model while maintaining high recognition 
accuracy. At the same time, the C2f module in the backbone network is replaced by the 
C2f_EMA module that integrates the EMA efficient multi-scale attention mechanism, 
enhancing the model's feature extraction ability for leaf diseases and pests in complex 
environments. Additionally, the original detection head is improved through multi-level 
channel compression to reduce features along the channel dimension. The SEDS-YOLOv8 
model is designed through the above methods. Experimental results show that the model's 
parameters, computational cost, and memory usage are reduced by 63.5%, 72.83%, and 61.9% 
respectively. The model's precision, recall, and mean average precision are 97.5%, 96.2%, and 
98.5% respectively. In terms of performance, the detection frame rate on mobile devices reaches 
358.5 frames per second, and the average inference time for a single leaf disease and pest image 
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is 4.4 ms. This proves that the algorithm can significantly reduce the computational load of the 
network while maintaining high detection performance, meeting the deployment requirements 
of mobile and embedded devices. 

Keywords: Pest detection; Slim-neck architecture; EMA efficient multi-scale attention; 
Multilevel channel compression; Channel pruning 

1 INTRODUCTION 

Citrus fruits are among the most common fruits in people's daily diets, with a wide variety 
of species. Their rich nutritional content and sweet, refreshing taste make them highly popular. 
As a widely cultivated crop globally, citrus brings substantial income to producing regions and 
farmers. In many rural areas, citrus cultivation has become a key pillar industry, playing an 
indispensable role in rural revitalization [1]. With the expansion of planting areas, ensuring 
citrus yield has become a major concern for farmers. Due to the long growth cycle of citrus and 
its susceptibility to climatic conditions and inherent growth characteristics, the crop is highly 
prone to various pests and diseases. Common citrus pests include rust mites, leafminers, 
aphids, and scale insects [2]. These pests tend to occur sporadically, making it difficult to 
predict their outbreaks in advance, and they can cause severe damage to citrus trees. 
Additionally, they may trigger concurrent infections with diseases such as Huanglongbing 
(citrus greening disease) and gummosis. These pests and diseases can lead to citrus tree decline, 
reduced fruit yield, and lower fruit quality. In severe cases, they may even cause plant death, 
resulting in significant economic losses for farmers [3]. 

There are numerous pest and disease control techniques for citrus, among which pesticide 
spraying is one of the most effective and commonly used methods. However, due to the wide 
variety of citrus pests and diseases, different diseases require specific treatment approaches, 
and different pests correspond to different pesticides [4]. Incorrect pesticide application not 
only fails to effectively control diseases, but may also cause additional harm to citrus trees, 
further reducing yield. Moreover, excessive fertilization and improper pesticide use can lead 
to soil and water pollution, posing risks to human health [5]. Therefore, accurately detecting 
the type and location of pests and diseases not only enables timely prevention and control but 
also reduces production costs. By ensuring precise pesticide application, environmental 
pollution can be mitigated, and both citrus yield and quality can be improved [6]. 

Citrus pest and disease identification primarily relies on recognizing pathological 
characteristics on leaves, fruits, and other plant parts. Typically, by the time disease symptoms 
appear on the fruit, the infection has already reached an advanced stage [3]. To ensure timely 
control, leaves should be the primary focus of observation. However, citrus leaf symptoms 
often exhibit similarities, and infected areas tend to be densely clustered, making identification 
challenging. Currently, citrus disease and pest classification mainly depends on manual 
inspection, which relies on expert diagnosis or farmers' personal experience [7]. Since citrus 
orchards are often located in remote areas with complex environments, this manual 
identification method is labor-intensive, inefficient, and highly subjective, leading to 
inconsistent diagnostic accuracy. Misdiagnosis can delay optimal treatment timing, 
exacerbating losses. Developing an accurate and efficient method for detecting citrus pests and 
diseases would help growers quickly identify disease types and implement effective control 
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measures in a timely manner, thereby minimizing losses caused by pests and diseases. 

2 RELEATED WORK 

With the rise of artificial intelligence and the rapid development of image recognition 
technology, many related algorithms have been applied to the detection of agricultural pests 
and diseases [8]. By collecting data and building models, these technologies help or replace 
manual decision-making. The inherent characteristics of citrus pests and diseases—such as 
similarities in interspecific features, complex natural environments, and occlusion by branches 
and leaves—make it easy for existing target detection models to suffer from issues like missed 
detections and false detections [9]. Therefore, they cannot meet the requirements for detecting 
various types and targets of pests and diseases in natural environments. Early research on 
image recognition of agricultural pests and diseases primarily combined traditional machine 
learning with image processing. Through image preprocessing, segmentation, and feature 
extraction techniques, features were manually selected and classified using machine learning 
algorithms (such as Support Vector Machines, K-Nearest Neighbors, linear regression analysis, 
Principal Component Analysis, etc.) to effectively identify pest images [10]. 

Traditional agricultural pest and disease detection based on machine learning has 
achieved substantial progress. Compared to manual identification of crop pests and diseases, 
machine learning methods offer higher efficiency and precision [8]. However, significant issues 
remain. The images of crop pests and diseases are often complex and irregular, making it 
difficult for traditional methods to extract optimal features for detection. Furthermore, these 
methods rely on manual feature extraction, leading to certain subjectivity and limitations, 
requiring considerable time, efficiency, and human resources for data preprocessing, which 
may lead to lower recognition accuracy [11]. The requirements for the detection environment 
are high, making it vulnerable to interference from other factors, and thus failing to adequately 
meet the practical requirements for pest and disease detection in the field [12]. 

Compared to machine learning, deep learning can automatically extract feature 
information from images, which prevents issues such as feature loss or errors that can arise 
from manual feature extraction [13]. Deep learning exhibits superior speed and accuracy over 
traditional algorithms, along with excellent generalization capabilities [14]. The advent of 
Convolutional Neural Networks (CNNs) has shown outstanding performance in the fields of 
image processing and classification and has begun to be extensively utilized in the detection of 
agricultural pests and diseases. With the continuous development of deep learning technology, 
various object detection algorithms based on deep learning have made the detection of 
agricultural pests and diseases more efficient [15]. These algorithms can provide accurate 
information regarding the location, category, and size of objects during the image detection 
process, better meeting the detection needs in practical applications [16]. Object detection 
algorithms are mainly divided into two categories: two-stage algorithms and one-stage 
algorithms [17]. 

Given the diversity of pests and diseases, significant variation in appearance and scale, 
and the similarity of relevant features to surrounding environments, detection remains 
challenging. This paper constructs a lightweight detection model dedicated to pest and disease 
detection based on the YOLOv8 object detection algorithm. Additionally, it studies the model's 
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deployment performance on edge computing devices such as Jetson Xavier NX and Raspberry 
Pi 4B, aiming to provide technical support for efficient intelligent detection of pests and 
diseases and the development of intelligent pest control equipment. 

3 MODEL ESTABLISHMENT AND SOLUTION 

3.1 Network structure of YOLOv8 deep learning model 

The YOLOv8 model network structure is shown in Figure 1, and it consists of four main 
parts: the input (Input), backbone (Backbone), neck (Neck), and detection head (Head) [18]. 

 

Fig. 1: Model network structure of YOLOv8 

The Input preprocesses the input image to the network by performing adaptive resizing, 
which improves the image processing efficiency. The Backbone consists of Conv, C2f, and SPPF 
modules, which are used to extract feature information from the input image. The C2f module 
includes 2 Conv layers and n Bottleneck layers, which help to extract richer gradient 
information. The SPPF module includes three consecutive max-pooling operations to capture 
object information at different scales, thus enhancing the accuracy of object detection. The Neck 
part is composed of a combination of PAN (Path Aggregation Network) and FPN (Feature 
Pyramid Network) structures, which fuse feature maps from different layers and scales, 
ensuring the model's ability to extract features in multi-scale scenarios. The Head adopts a 
decoupled head structure and an anchor-free strategy, using 3 decoupled heads to perform 
image detection and classification tasks at different scales. Finally, the model outputs the target 
class and detection box location information. 



International Scientific Technical and Economic Research | ISSN: 2959-1309 | Vol.3, No.1, 2025 
www.istaer.online 

43 
 

3.2 Slim-neck module 

In detecting leaf pests and diseases in natural environments, high accuracy and speed 
performance are essential for the model, as they directly affect its operational capability and 
deployability. Typically, the larger the number of model parameters, the larger the model size, 
which increases the difficulty and cost of deployment on actual mobile devices. Therefore, to 
maintain detection accuracy while effectively reducing the model's complexity, a lightweight 
network structure, Slim-neck, composed of GSConv and VoV-GSCSP modules, was built to 
improve the YOLOv8 model. In Slim-neck, the lightweight hybrid convolution GSConv 
(Group-Shuffle Convolution) was first used to replace all Conv modules in the original 
YOLOv8 neck network. The GSConv structure is shown in Figure 2 and consists of standard 
convolution (SC), depthwise separable convolution (DSC), and shuffle operations. The Slim-
neck using the GSConv module maximizes the advantages of DSC and eliminates the negative 
effects that arise from channel information separation, such as reduced feature extraction 
capability. GSConv first performs SC on the feature map, followed by DSC, then concatenates 
the feature maps produced by both operations, and finally uses the shuffle operation to 
recombine the channels. This method fully utilizes the advantages of both convolutions, 
enabling the model to maintain detection performance while significantly reducing 
computational complexity. 

Correspondingly, based on GSConv, the VoV-GSCSP (Variety of View Group Shuffle 
Cross Stage Partial Network) module was introduced to further reduce computational costs 
and balance detection accuracy. Its structure is shown in Figure 2. This module aggregates 
cross-stage partial networks in a one-time manner, optimizing the trade-off between efficiency 
and performance. 

 

Fig. 2: Slim-neck Model structure 

The feature extraction process of the VoV-GSCSP module is divided into two paths: Path 
One involves extracting features through conventional convolution on the input feature map; 
Path Two first processes the input feature map with conventional convolution, then performs 
feature extraction using the GSBottleneck structure designed based on GSConv, and finally 
concatenates the feature maps from both paths for output. The VoV-GSCSP module fully 
leverages the advantages of GSConv and GSBottleneck, enhancing the model's feature 
extraction capability, reducing the number of model parameters, and further improving the 
model's lightweight performance while maintaining detection accuracy. In this study, the VoV-
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GSCSP module replaced all C2f modules in the Neck part of the original YOLOv8 model. 

3.3 Efficient multi-scale attention mechanism of EMA 

In the process of detecting leaf pests and diseases, issues such as partial occlusion between 
leaves and variations in environmental lighting can lead to missed detections. Additionally, 
there is a certain degree of feature similarity between different types of pests and diseases, as 
well as between pests and surrounding objects, which can cause false detections. These 
problems are related to the model's limited ability to extract effective leaf pest and disease 
feature information or its insufficient ability to filter the extracted features. To enhance the 
model's detection capability for leaf pest and disease images, this study introduces the EMA 
(Efficient Multi-Scale Attention) mechanism into the backbone network of YOLOv8. The EMA 
attention mechanism is an efficient multi-scale attention mechanism based on cross-spatial 
learning. It reshapes certain channels into the batch dimension and groups the channel 
dimensions, without requiring dimensionality reduction. This approach helps prevent the loss 
of channel feature information and reduces computational overhead, offering high accuracy 
and a low number of parameters. 

The structure of the EMA attention mechanism module is illustrated in Figure 3. Its 
operational workflow is as follows: First, for any input 𝑋𝑋 ∈ ℝ(𝐶𝐶×𝐻𝐻×𝑊𝑊), the EMA divides it along 
the channel dimension into 𝐺𝐺  sub-features, represented as 𝑋𝑋 = [𝑋𝑋0,𝑋𝑋1, … ,𝑋𝑋𝐺𝐺−1] , where 𝑋𝑋 ∈
ℝ(𝐶𝐶/𝐺𝐺×𝐻𝐻×𝑊𝑊) , in order to capture different semantic information. Subsequently, the EMA 
employs three pathways to extract attention weight descriptors from the grouped feature maps. 

 

Fig. 3: Network structure of the EMA mechanism module 

The first two pathways utilize a 1 × 1  branch that incorporates 1 × 1  convolution 
operations, while the third pathway employs a 3 × 3 branch that utilizes 3 × 3 convolution 
operations. In the 1 × 1 branch, two one-dimensional global average pooling operations are 
applied in different directions to encode the channels, facilitating cross-channel information 
interaction. Conversely, the 3 × 3 branch omits the one-dimensional global average pooling 
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operation and Group Normalization to achieve multi-scale feature representation. 
Subsequently, a two-dimensional global average pooling operation is applied to encode global 
spatial information from the outputs of both the 1 × 1 and 3 × 3 branches. The formula for 
the twodimensional global average pooling operation is as follows: 

𝑍𝑍𝐶𝐶 = 1
𝐻𝐻×𝑊𝑊

∑  𝐻𝐻
𝑗𝑗 ∑  𝑊𝑊

𝑖𝑖 𝑋𝑋𝐶𝐶(𝑖𝑖, 𝑗𝑗)                                                         (1) 

In the equation, 𝑍𝑍𝐶𝐶 represents the output value of the 𝐶𝐶-th channel after pooling, where 
𝐻𝐻 and 𝑊𝑊 denote the spatial dimensions of the input features. The variable 𝐶𝐶 indicates the 
number of channels, and 𝑋𝑋𝐶𝐶(𝑖𝑖, 𝑗𝑗)  represents the input of the 𝐶𝐶 -th channel at width 𝑖𝑖  and 
height 𝑗𝑗. 

The output feature maps within each group are obtained by aggregating two generated 
spatial attention weight values. Finally, a Sigmoid activation function is employed to capture 
pixel-level paired relationships, thereby acquiring global contextual information. This study 
integrates the EMA attention mechanism into the Bottleneck of the C2f module, forming the 
C2f_EMA module. This integration enhances the capability of the C2f module to capture multi-
scale feature information by optimizing the Bottleneck structure. Overall, based on prior 
experience, the second and fourth C2f modules in the YOLOv8 backbone network are replaced 
with the C2f_EMA module. With the incorporation of the EMA attention mechanism, the 
model can utilize 1 × 1 and 3 × 3 convolutions to connect more contextual information in the 
intermediate feature maps, further refining and screening the characteristic information of 
disease-affected leaves. This approach to cross-spatial information aggregation in different 
spatial dimensions enables the model to effectively address the issues of missed and false 
detections of leaf pests and diseases. 

3.4 Lightweight asymmetric detection head Detect-LADH 

In this study, the number of pest and disease categories in the dataset directly affects the 
probability of false detections among different classes. The original YOLO algorithm employed 
a coupled head for detection tasks, primarily utilizing the same convolutional layers at the top 
of the network for classification and regression. However, these tasks have distinct focuses, 
which can lead to conflicts during the detection process. In subsequent improvements, while 
the introduction of a decoupled head method significantly enhanced the model's detection 
capabilities, it also greatly increased the network's parameter count, resulting in reduced 
inference speed. To address these issues, this paper draws upon the idea of improving the 
asymmetric decoupling head (ADH) proposed by Chollet and employs multi-level channel 
compression to enhance the detection head in the YOLOv8 network. The modified module is 
called Detect-LADH, with its structure illustrated in Figure 4. By isolating tasks within the 
network, two different channels are utilized to perform related tasks. To expand the receptive 
field and increase the task parameters for the regression branch, three depthwise separable 
convolutions (DSConvs) are employed to reduce features along the channel dimension, 
replacing the traditional 3×3 convolutions in each branch. The advantage of DSConv over 
standard convolutions lies in its significant reduction in parameter count by decomposing the 
convolution operation into depthwise convolutions and pointwise convolutions (PWConv). 
The operational flow for PWConv is shown in Figure 4, where the convolution operation 
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weights and combines the channels C from the previous output along the depth direction to 
generate new feature channels C. The number of new channels generated equals the number 
of convolution kernels used. This module effectively resolves the conflicts introduced by the 
original coupled head between classification and regression tasks, thereby reducing the 
probability of false detections among different diseases. P3, P4, and P5 are multi system object 
detection heads, whereP3 corresponds to a detection map size of 80 × 80, P4 corresponds to a 
detectionfeature map size of 40 × 40, and P5 corresponds to a detection feature map sizeof 20 
× 20; Conv_Seg is the regression channel, and Conv_Cls is theclassification channel. 

 

Fig. 4: Detect-LADH module structure and Pointwise convolution implementation procedure 

3.5 Model pruning 

The improved methods used in the YOLOv8n model for leaf disease detection retain 
detection accuracy while compressing model size and computational load. However, the 
presence of numerous convolutional structures in the model still results in redundancy, which 
poses a significant resource burden for future deployment on embedded devices. To further 
lighten the model and accelerate inference speed, the Slim pruning method from structured 
pruning is employed for additional model compression. 

In channel pruning, sparse training is first conducted on the Batch Normalization (BN) 
layers of the network model to filter out some unimportant channels. Currently, batch 
normalization is commonly used to expedite model convergence. During channel pruning, the 
BN layer normalizes the internal activations using small batch statistics. Let 𝑧𝑧in  and 𝑧𝑧out 
represent the input and output of the BN layer, respectively, 𝐵𝐵 denote the current mini-batch, 
and 𝜖𝜖 be a small positive constant to avoid division by zero. A scaling factor 𝛾𝛾 and a bias 𝛽𝛽 
are introduced for each channel of the BN layer. The normalization process of channel data in 
the BN layer is expressed as follows: 

�̂�𝑧 =
(𝑧𝑧𝑖𝑖𝑖𝑖 − 𝜇𝜇𝐵𝐵)

�𝜎𝜎𝐵𝐵2 + 𝜖𝜖
                                                                           (2) 

𝑧𝑧out = 𝛾𝛾�̂�𝑧 + 𝛽𝛽                                                                             (3) 

Here, 𝜇𝜇𝐵𝐵 and 𝜎𝜎𝐵𝐵 are the mean and standard deviation of the input activations in batch 
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𝐵𝐵. In CNNs, a common practice is to insert a BN layer after the convolution layer and utilize 
the channel scaling parameters for adjustment. In this regard, Slim introduces a scaling factor 
𝛾𝛾 for each channel, multiplying this factor with the channel's output, after which the network 
weights are combined with these scaling factors, applying sparse regularization to 𝛾𝛾. The loss 
function 𝐿𝐿 is defined as follows: 

𝐿𝐿 = �  
(𝑥𝑥,𝑦𝑦)

𝑙𝑙(𝑓𝑓(𝑥𝑥,𝑊𝑊),𝑦𝑦) + 𝜆𝜆�  
𝛾𝛾∈𝛤𝛤

𝑔𝑔 ⋅ (𝛾𝛾)                                             (4) 

In this equation, ∑(𝑥𝑥,𝑦𝑦)  𝑙𝑙(𝑓𝑓(𝑥𝑥,𝑊𝑊),𝑦𝑦) represents the normal training loss function, where 𝑥𝑥 
and 𝑦𝑦  denote the training input and output, and 𝑊𝑊  represents the trainable weights. The 
term 𝜆𝜆∑𝛾𝛾∈Γ 𝑔𝑔 ⋅ (𝛾𝛾)  is the regularization term, where 𝑔𝑔(𝛾𝛾)  is the penalty function for the 
scaling factors, with the L 1 norm selected: 𝑔𝑔(𝛾𝛾) = |𝛾𝛾|. Here, the weight coefficient 𝜆𝜆 acts as a 
balance factor, controlling sparsity. 

When setting different sparse regularization values 𝜆𝜆, the weights and mean accuracy of 
the model's BN layers exhibit corresponding changes. If 𝜆𝜆 is too small, the sparsity process is 
slow, failing to distinguish channel importance. Conversely, if 𝜆𝜆  is too large, the accuracy 
tends to drop too quickly. To maintain good recognition performance while conducting sparse 
training, the optimal sparsity rate is determined. Based on preliminary experimental data, 𝜆𝜆 
was set to 0.0005, 0.001 ,0.005, and 0.01, and the original model underwent sparse training. 
The distribution changes of the BN layer scaling factors under different coefficients were 
visualized. It can be observed that the 𝛾𝛾  coefficients gradually approach zero as training 
progresses, and the larger the sparsity rate, the faster 𝛾𝛾 approaches zero. 

After sparse training, the model becomes more compact, with many scaling factors 
approaching zero. Subsequently, for those channels with scaling factors near zero, all input and 
output connections and their corresponding weights are removed. The model is pruned based 
on different ratios. As the number of deleted channels increases (i.e., the percentage increases), 
it is necessary to choose an appropriate pruning rate during the pruning process. 

After conducting 10 experiments with different pruning rates, it was observed that as the 
pruning rate increased, the number of model parameters gradually decreased. This decrease 
was particularly noticeable when the pruning rate was between 20% and 60%. When the 
pruning rate was below 50%, the average model accuracy remained around 97% with slight 
fluctuations. However, when the pruning rate exceeded 50%, the model's accuracy significantly 
dropped, making it unsuitable for real-time detection of leaf diseases. Therefore, to balance 
model accuracy with the degree of memory reduction, this paper selects 50% as the 
experimental pruning rate. After the experiments, it was found that, apart from a few critical 
channels that could not be pruned, most of the remaining channels underwent a certain degree 
of compression. This result indicates that the pruning algorithm is effective for this model. 

4 EXPERIMENTAL RESULTS AND ANALYSIS 

4.1 Data sources 

The citrus leaf dataset in this study contains five categories of leaves: Black Spot, Melanose, 
Canker, Greening, and Healthy leaves. To reduce resource consumption during the network 
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training process, all images in the dataset were compressed and uniformly adjusted to a 
resolution of 640×640 pixels. Since most of the acquired datasets were not annotated, this paper 
used Label Img software to manually label the pixel regions of the targets on RGB images. The 
diseased areas were marked with the maximum enclosing rectangle, ensuring that the rectangle 
closely adhered to the edges of the target pixels, and the labeling format adopted the YOLO 
format. 

To enhance the adaptability and robustness of the training model and to prevent it from 
overfitting on a specific dataset, random noise, local cropping, and random rotations were 
applied to the original image collection, ultimately expanding the dataset to 4,558 images. 

The hardware configuration for the model training and testing platform in this study 
includes a 14th generation Intel Core i9-14900K CPU, an NVIDIA GeForce RTX 2080TI GPU, 
and 22GB of video memory. The software configuration consists of Windows 11 operating 
system, PyTorch 2.0.1 deep learning framework, CUDA version 11.8, Python 3.8 programming 
language, and PyCharm integrated development environment. During training, the input 
image size for the model is set to 640 pixels × 640 pixels, with a batch size of 16 and a total of 
100 epochs. The initial learning rate is set to 0.01, while the remaining parameters use their 
default values. 

The edge computing devices used to test the model's actual deployment performance 
include a Jetson Xavier NX (manufacturer: NVIDIA, USA) and a Raspberry Pi 4B development 
board. The Jetson Xavier NX is equipped with a 6-core NVIDIA Arm 64-bit CPU, a 48-core 
NVIDIA Volta architecture GPU, and 8GB of RAM. The software environment includes Ubuntu 
18.04 operating system, PyTorch 1.8 deep learning framework, and Python 3.6.9 programming 
language. The Raspberry Pi 4B development board features a 4-core 64-bit CPU and 4GB of 
RAM. Its operating environment includes Raspberry Pi OS, PyTorch 1.8.1 deep learning 
framework, and Python 3.9 programming language. 

4.2 Comparison of detection performance of different attention mechanisms 

To investigate the rationale for introducing the EMA attention mechanism, other 
representative attention mechanisms were selected for comparative experiments. During the 
experiments, each attention mechanism module was placed in the same position within the 
YOLOv8 network structure and tested on the validation set. Table 1 lists the results of the 
comparative experiments. 

Table 1: Test results of the models with different attentionmechanisms 

Models 𝑃𝑃/% 𝑅𝑅/% mAP/% Model size／MB 

YOLOv8 88.6 80.7 87.7 6.0 

C2fEMA－YOLOv8 90.6 80.9 87.9 6.0 

CBAM－YOLOv8 85.7 77.8 86.0 6.0 

SE－YOLOv8 91.0 79.8 87.5 6.0 

SEAM－YOLOv8 90.8 77.3 87.5 6.1 

When the EMA attention mechanism was introduced, the model's mean Average Precision 



International Scientific Technical and Economic Research | ISSN: 2959-1309 | Vol.3, No.1, 2025 
www.istaer.online 

49 
 

(mAP) improved by 0.2 percentage points compared to the baseline. In contrast, when the 
CBAM, SE, and SEAM attention mechanisms were introduced, the model's mAP decreased by 
varying degrees compared to the baseline, specifically by 1.7, 0.2, and 0.2 percentage points, 
respectively. 

Compared to EMA, although the CBAM attention mechanism considers both channel and 
spatial attention, it only focuses on local information without establishing long-range 
dependencies. This limitation affects its ability to balance local pest and disease features with 
the overall leaf context, thereby hindering the detection of diseased leaves in complex 
environments. The SE attention mechanism focuses solely on channel attention, which 
somewhat restricts the positioning and extraction capabilities for citrus pest and disease 
features. The SEAM attention mechanism may not reliably extract effective targets under 
complex scenes and extreme occlusion conditions. 

Moreover, results indicate that adding attention mechanisms did not significantly increase 
the model size. In summary, the introduction of the EMA attention mechanism enhances 
feature extraction capability without enlarging the model size. The findings demonstrate that 
introducing the EMA attention mechanism is an effective approach to improving the model's 
accuracy in detecting citrus pests and diseases. 

4.3 Ablation test 

To investigate the impact of introducing the Slim-neck module and EMA attention 
mechanism on the performance of the developed citrus pest and disease detection model, 
ablation experiments were conducted. The test set results are shown in Table 2. 

Table 2: Results of the ablation test 

Models 𝑃𝑃/% 𝑅𝑅/% mAP/% mAP50−95/% Parameters /M 

YOLOv8 88.6 80.7 87.7 75.3 3.0 

YOLOv8＋Slim－neck 89.5 81.4 88.8 75.0 2.8 

YOLOv8＋C2f＿EMA 90.6 80.9 87.9 75.6 3.0 

YOLOv8＋Slim－neck＋C2f

＿EMA 
92.4 81.8 89.3 75.3 2.8 

Analyzing the results in Table 2, it can be observed that after adding the Slim-neck module, 
the model's precision increased by 0.9 percentage points, the recall rate increased by 0.7 
percentage points, and the mean Average Precision (mAP) increased by 1.1 percentage points, 
while the number of parameters decreased by 0.2 million. This improvement is attributed to 
the model reducing computational complexity by optimizing the connection methods of 
feature maps and minimizing redundant calculations. Simultaneously, the VoV-GSCSP 
module can extract features more effectively, thereby maintaining detection accuracy. 

After introducing the EMA attention mechanism, the model's precision increased by 2 
percentage points, and recall and mAP improved by 0.2 percentage points each. This 
enhancement occurs because the model can integrate features from different scales, paying 
more attention to the citrus targets with pests and diseases in complex backgrounds. 

When both the Slim-neck module and EMA attention mechanism are added to the 
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YOLOv8 model, the precision, recall, and mAP of the model increased by 3.8, 1.1, and 1.6 
percentage points, respectively, with the number of parameters decreasing by 0.2 million. The 
improved YOLOv8 model demonstrates significantly better object detection capabilities than 
the aforementioned models, with reduced instances of missed and false detections, while also 
having a substantially smaller parameter count compared to the baseline model. The 
implemented improvements effectively enhance the model's detection performance while 
reducing its size, allowing each modification to play its intended role. 

4.4 Performance comparison of mainstream models 

In order to study the difference between the improved YOLOv8 model and other models 
in the detection performance of citrus diseases and pests, this section selects several 
mainstream object detection models: Faster R-CNN, SSD, YOLOv3, YOLOv4, YOLOv5, 
YOLOv7, YOLOv8 and YOLOv9 to carry out performance comparison tests. The test results 
are shown in Table III. Compared with other models, the accuracy and mAP results of the 
improved YOLOv8 model are higher, and the number of parameters and model size are smaller. 
Compared with Faster R-CNN, SSD, YOLOv3, YOLOv4, YOLOv5, YOLOv7 and YOLOv9 
models, the mAP is increased by 3.8, 10.3, 13.5, 30.7, 5.3, 6.3 and 4.9 percentage points, 
respectively. The number of parameters is reduced by 38.5, 21.0, 58.7, 61.1, 4.2, 33.7 and 6.8M, 
respectively. The model size is reduced by 102.4, 86.5, 229.4, 238.4, 8.0, 65.7 and 13.7 MB, 
respectively. 

Table 3: Detection performance comparison between differentmainstream object detection 
models on the test dataset 

Models 𝑃𝑃/% 𝑅𝑅/% mAP/% Parameters／M Model size／MB 

Faster R－CNN 64.3 85.1 85.5 41.3 108.0 

SSD 88.5 80.1 79.0 23.8 92.1 

YOLOv3 82.7 66.4 75.8 61.5 235.0 

YOLOv4 80.9 40.5 58.6 63.9 244.0 

YOLOv5 86.9 76.5 84.0 7.0 13.6 

YOLOv7 81.1 80.5 83.0 36.5 71.3 

YOLOv8 88.6 80.7 87.7 3.0 6.0 

YOLOv9 84.2 79.8 84.4 9.6 19.3 

SEDS-YOLOv8 92.4 81.8 89.3 2.8 5.6 

In order to verify the actual detection effect before and after the improvement of the model, 
multiple separately taken images of citrus diseases and pests are selected for detection, and the 
visualization results are shown in Figure 5.  
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Fig. 5: Effect of citrus leaf detection 

In the detection and recognition task of citrus diseases and pests, compared with the 
original model, the improved YOLOv8 model not only achieves good detection accuracy of 
citrus diseases and pests, but also has a good lightweight effect. In addition, the model shows 
a stronger ability to detect pests and diseases in the field. 

4.5 Edge computing device deployment test analysis 

In order to verify the actual deployment performance of the established improved 
YOLOv8 model on the mobile terminal in the field, the model, the baseline model and the 
YOLOv5 model with more field deployment reports were deployed on the edge computing 
devices Jetson XavierNX and Raspberry PI 4B, and the test experiment was carried out. The 
model checking frame rate results are shown in Table IV. 

Table 4: Detection frame rate of the model implemented on theedge computing devices 

Device YOLOv5 YOLOv8 Improved YOLOv8 

Jetson Xavier NX 18.1 23.9 27.0 

Raspberry PI 4B 0.4 0.7 0.7 

The detection frame rate achieved by the improved YOLOv8 model on Jetson Xavier NX 
and Raspberry PI 4B is 27.0 and 0.7 frames /s, respectively. The detection frame rate of YOLOv8 
model implemented on Jetson Xavier NX and Raspberry PI 4B is 23.9 and 0.7 frames /s, 
respectively. The detection frame rates of YOLOv5 model implemented on Jetson Xavier NX 
and Raspberry PI 4B are 18.1 and 0.4 frames /s, respectively. Compared with the YOLOv5 
model, the frame rate of the improved YOLOv8 model is increased by 8.9 and 0.3 frames /s on 
Jetson XavierNX and Raspberry PI 4B, respectively. The above results show that the improved 
YOLOv8 model has good prospects for mobile terminal deployment, which can provide 
technical support for the research and development of efficient intelligent detection and 
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intelligent control equipment of citrus diseases and pests. 

5 CONCLUSION 

This study proposes a lightweight citrus pest and disease detection model based on the 
improved YOLOv8, and establishes a citrus pest and disease dataset considering different 
environmental conditions, providing a new approach for the intelligent detection of citrus pests 
and diseases and the on-site deployment of equipment. In the improved YOLOv8 model, 
lightweight convolution GSConv and VoV-GSCSP modules are introduced to form a Slim-neck 
lightweight architecture. Additionally, the EMA attention mechanism is incorporated into the 
model to form the C2f_EMA module, replacing the C2f module in the model's Backbone. This 
enables the model to maintain high accuracy while reducing computational complexity and 
enhancing its ability to extract and fuse multi-scale spatial features of citrus pests and diseases. 
To improve the model's robustness to data, the MLCA attention mechanism is added, which 
reduces complexity without significantly lowering the model's accuracy. Finally, the model is 
pruned to further compress it. The precision, recall, and mAP of the model are 92.4%, 81.8%, 
and 89.3% respectively, enabling accurate and effective identification of citrus pests and 
diseases. Compared with the current mainstream models such as Faster R-CNN, SSD, YOLOv3, 
YOLOv4, YOLOv5, YOLOv7, YOLOv8, and YOLOv9, the improved YOLOv8 model achieves 
higher mAP, fewer parameters, and a smaller model size. It not only achieves good detection 
accuracy for citrus pests and diseases but also has a better lightweight effect, making it more 
advantageous in the detection of citrus pests and diseases in complex backgrounds. The 
improved YOLOv8 model has been deployed and tested on edge computing devices Jetson 
Xavier NX and Raspberry Pi 4B, achieving detection frame rates of 27.0 and 0.7 frames per 
second respectively. Its deployment performance is superior to that of the mainstream YOLOv5 
model and the YOLOv8 baseline model, effectively meeting the requirements for lightweight 
deployment of intelligent pest and disease control equipment.  

The improved YOLOv8 model proposed in this study achieves precise identification of 
citrus pests and diseases, and has a promising prospect for mobile deployment. It can provide 
technical support for the development of automatic pest and disease control operations and 
intelligent pest and disease control equipment for citrus. In the future, we will collect more 
images of citrus leaf pests and diseases under occlusion or different lighting conditions to 
enrich the dataset, and further analyze the features of the input data and observe the network 
structure. Additionally, we will compare the use of multiple pruning algorithms to perform 
secondary compression on the model, so as to achieve further lightweighting of the model 
while improving the accuracy of object detection. 

6 DATA SOURCES 

The article includes some data to support the results of this research. The dataset for this 
article is available at https://github.com/jinmuxige0816/orange 
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