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ABSTRACT   

During the process of running, the pace varies with changes in time. Experienced runners 
adjust their pace by modifying stride length and frequency. To simulate the relationship 
between stride length, frequency, and pacing throughout a run using neural network methods, 
we can leverage the temporal patterns present in the data. The unique memory capabilities of 
Long Short-Term Memory (LSTM) networks make them well-suited for this task. To enhance 
the predictive accuracy of the LSTM model, we incorporate a self-attention mechanism that 
improves the model's ability to associate information from different positions within the input 
data. This self-attention mechanism enables the model to identify which parts of the data are 
more significant and thus allocate greater focus during predictions, ultimately enhancing 
performance. The LSTM method augmented with a self-attention mechanism can accurately fit 
changes in running pace based on historical exercise data, providing valuable insights for 
practitioners in running sports. Experimental results indicate that this model achieves a fitting 
error on the order of 10−4. 

Keywords: Neural Network; LSTM; Running pace change fitting; Self-attention 
mechanism; TOPSIS; Enhancing performance 

1 INTRODUCTION 

Running, as a sport with relatively low entry barriers and widespread popularity, presents 
athletes with the important challenge of maximizing training effectiveness. In running, 
participants adjust their pace based on their current physical condition to achieve their target 
distance. An optimal pacing strategy not only conserves the runner's energy but also maximizes 
the benefits of physical training. Cadence and stride length are two critical factors that influence 
pacing. Investigating the effects of cadence and stride length on pacing holds significant 
research value. If we can model changes in pace based on a runner's historical data regarding 
cadence or stride length, it would enable real-time adjustments to these parameters during 
future workouts. Therefore, there is a pressing need to design a predictive model for running 
pace that effectively processes time series data. 

2 RELEATED WORK 

As artificial intelligence rapidly advances, an increasing number of machine learning 
methods are being employed for prediction and fitting tasks [1]. These include algorithms such 
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as logistic regression, support vector machines, and neural networks [2][3]. In the realm of 
sports, several athletic disciplines have adopted machine learning techniques to facilitate 
relevant predictive tasks. For instance, Urtats Etxegarai et al. utilized machine learning 
technology to estimate the lactate threshold of recreational runners [4]. Their system modeled 
lactate evolution using recurrent neural networks, achieving an impressive accuracy rate of 
89.52% in estimating the lactate thresholds of athletes while demonstrating high generalization 
capabilities. Kichang Lee et al. analyzed the impact of automated batting systems (ABS) in 
professional baseball using data from the Korean KBO League [5]. The ABS employs machine 
learning, computer vision, and precise tracking technologies to automate batting processes [6]. 
This study examined pitching data from 2,515 games to compare decisions made by human 
umpires with those rendered by the ABS. Gyanna Gao et al. leveraged artificial intelligence for 
fair and accurate classification of tennis skill levels and training stages in a pilot study that 
processed data from 12 participants using a support vector machine (SVM) algorithm [7] . The 
model demonstrated an overall accuracy rate of 77% in classifying players as beginners or 
intermediate-level competitors while maintaining low false positive and false negative rates 
effectively distinguishing between skill levels. These methodologies illustrate that machine 
learning has shown promising results across various categories within sports prediction 
environments; however, there remains a notable gap in research specifically addressing 
variations in running pace dynamics. Furthermore, existing models tend to overlook how 
temporal characteristics inherent in time series data can influence predictive accuracy. 

Currently, various deep learning models based on increasing the depth of neural networks 
are being more widely applied to artificial intelligence tasks [8]. Simon Lacan proposed a 
stacked deep learning model for detecting high-potential soccer players, which demonstrated 
significantly better results than traditional statistical methods when tested on an open-source 
database [9] . Among the various deep learning models, Recurrent Neural Networks (RNNs) 
excel at handling sequential time series data. Long Short-Term Memory (LSTM) networks are 
a specialized type of RNN that effectively retain long-term memory information and exhibit 
superior predictive performance compared to standard RNNs. Hsuan-Cheng Sun and 
colleagues utilized LSTM networks to predict player performance in Major League Baseball, 
revealing that LSTMs outperform other memory types in terms of effectiveness [10]. Similarly, 
Rahul Chakwate and his team employed LSTM networks to forecast the final outcomes of 
cricket matches at any given point during the game [11]. 

The self-attention mechanism is a significant technique in deep learning that enables 
models to directly consider the relationships between various positions within a sequence 
when processing sequential data, without relying on external information [12]. The core idea 
of this mechanism is to compute the relevance (or weights) of each element in the sequence 
with respect to other elements and update each element's representation based on these 
weights. While LSTM networks can learn long-term dependencies, they may struggle to 
capture distant correlations when dealing with longer sequences. In contrast, the self-attention 
mechanism allows models to focus on parts of the input sequence that are most relevant to the 
current output during generation, thereby enhancing both model expressiveness and 
generalization capability. Combining these two approaches leverages LSTM's long-term 
memory capabilities alongside the dynamic focusing ability of self-attention mechanisms. 
Pouya Shaeri et al. proposed a semi-supervised fake news detection method based on 
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emotional encoding and LSTM combined with self-attention; experiments demonstrated that 
this approach exhibited superior performance in terms of accuracy, recall rate, and 
measurement metrics [13]. Similarly, Bingyu Li et al. introduced an interpretable deep learning 
architecture utilizing both LSTM and self-attention mechanisms for high-accuracy sentiment 
analysis of text [14]. The integration of self-attention mechanisms with LSTMs effectively 
harnesses their respective strengths, significantly improving model performance in handling 
complex sequential data. 

During the process of running, factors such as cadence, stride length, and pace 
continuously change over time or with distance covered. When studying the relationships 
among these variables, it is essential to fully consider their temporal characteristics while also 
leveraging prior information effectively. The unique memory capabilities of Long Short-Term 
Memory (LSTM) networks can adeptly address this task. To enhance the predictive accuracy 
of the LSTM model, an attention mechanism has been incorporated into the framework to 
strengthen its ability to associate different positional information within the input data. This 
self-attention mechanism enables the model to identify which parts of the data are more 
significant and thus allocate greater focus on these areas during prediction, ultimately 
improving overall performance. Based on this approach, this paper employs a Self-Attention-
LSTM model to fit variations in running pace [15]. 

3 MATERIALS AND METHODS 

3.1 Fundamental Principles of the Self-Attention Mechanism 

In neural networks, the attention mechanism enhances model performance by applying 
weighted processing to input data, guiding the model to focus more on information that is 
crucial for the current output [16]. This mechanism has been widely extended to various time 
series processing tasks. The self-attention mechanism is a variant of the attention mechanism; 
its fundamental principle involves calculating the relevance (or "attention weights") between 
each element in a sequence and all other elements. These weights are then utilized to update 
the representation of each element, ensuring that every representation incorporates 
information from other elements within the sequence. This approach effectively addresses 
long-range dependency issues and offers higher computational efficiency, as illustrated in 
Figure 1: 

 

Fig. 1: Diagram of the Self-Attention Mechanism Structure. 

The variable 𝑎𝑎𝑖𝑖 in the figure represents the feature values of the input vector, while 𝑏𝑏𝑖𝑖 
denotes the output vector. The calculation formula for 𝑏𝑏1 is as follows: 
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𝑏𝑏1 = �𝛼𝛼1,𝑖𝑖
′𝑣𝑣𝑖𝑖

𝑖𝑖

,                                                                       (1) 

The terms 𝑞𝑞 , 𝑘𝑘 , and 𝑣𝑣  refer to the Query values, Key values, and Value values 
respectively. Unlike traditional attention mechanisms, in this context, 𝑞𝑞, 𝑘𝑘, and 𝑣𝑣 are derived 
from the same input. The calculation formula is as follows: 

𝑞𝑞𝑖𝑖 = 𝑤𝑤𝑞𝑞𝑖𝑖 ⋅ 𝑎𝑎𝑖𝑖 , 𝑘𝑘𝑖𝑖 = 𝑤𝑤𝑘𝑘𝑖𝑖 ⋅ 𝑎𝑎𝑖𝑖 , 𝑣𝑣𝑖𝑖 = 𝑤𝑤𝑣𝑣𝑖𝑖 ⋅ 𝑎𝑎𝑖𝑖 ,                                                (2) 

In this context, 𝑤𝑤𝑞𝑞𝑖𝑖 ,𝑤𝑤𝑘𝑘𝑖𝑖 ,𝑤𝑤𝑣𝑣𝑖𝑖 are the weight parameters that need to be learned. 

3.2 Long Short-Term Memory Neural Network (LSTM) 

The Long Short-Term Memory neural network was first introduced by Hochreiter and 
Schmidhuber in 1997 [17]. It is fundamentally a specialized type of recurrent neural network 
[18]. LSTM incorporates three distinct "gates"—the forget gate, input gate, and output gate—to 
regulate the retention and updating of information. This mechanism enables LSTMs to 
effectively capture long-term dependencies within sequential data, making them particularly 
suitable for processing and predicting significant events characterized by extended intervals 
and delays in time series data. The structure of an LSTM unit is illustrated in Figure 2: 

 

Fig. 2: Diagram of the LSTM Structure. 

The forget gate is responsible for determining which information to discard. This gate 
reads the value of the previous hidden state ℎ𝑡𝑡−1 and the current input 𝑥𝑥𝑡𝑡, then passes this 
information through a sigmoid function. It outputs a value between 0 and 1 for each element 
in the previous cell state 𝐶𝐶𝑡𝑡−1. A value of 1 indicates "completely retain," while a value of 0 
signifies "completely discard." 

𝑓𝑓𝑡𝑡 = 𝜎𝜎𝑓𝑓(𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓),                                                           (3) 
In this context, 𝑊𝑊𝑓𝑓 represents the weights of the forget gate, 𝑏𝑏𝑓𝑓 denotes the bias of the 

forget gate, 𝜎𝜎𝑓𝑓 refers to the sigmoid activation function, and 𝑓𝑓𝑡𝑡 indicates the output of the 
forget gate. 

The input gate is responsible for updating the cell state. This process consists of two parts: 
first, a "input gate layer" using a sigmoid function determines which values will be updated; 
second, a tanh layer generates a new candidate value vector �̃�𝐶𝑡𝑡 to be incorporated into the 
state. 
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𝑖𝑖𝑡𝑡 = 𝜎𝜎𝑖𝑖(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖),                                                               (4) 
�̃�𝐶𝑡𝑡 = 𝑡𝑡𝑎𝑎𝑡𝑡ℎ(𝑊𝑊𝐶𝐶 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶),                                                          (5) 

In this context, 𝑊𝑊𝑖𝑖  and 𝑊𝑊𝐶𝐶  represent the weights of the input gate, while 𝑏𝑏𝑖𝑖  and 𝑏𝑏𝐶𝐶 
denote the biases associated with it. The symbol 𝜎𝜎𝑖𝑖 refers to the sigmoid activation function, it 
indicates the output of the input gate, and �̃�𝐶𝑡𝑡 signifies the candidate cell state. 

The second step involves multiplying the previous state by ft, discarding the information 
that needs to be omitted. Subsequently, we add 𝑖𝑖𝑡𝑡 ∗ �̃�𝐶𝑡𝑡 to obtain the new cell state: 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ �̃�𝐶𝑡𝑡 ,                                                                (6) 
The term 𝐶𝐶𝑡𝑡 refers to the most recent cell state at time 𝑡𝑡, while the symbol ∗denotes the 

element-wise multiplication operation. 
The output gate is responsible for producing the information output. It determines the 

portion of the cell state to be output through a sigmoid layer, and ultimately derives the final 
output value via a dot product operation. 

𝑜𝑜𝑡𝑡 = 𝜎𝜎𝑜𝑜(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜),                                                            (7) 
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ 𝑡𝑡𝑎𝑎𝑡𝑡ℎ(𝐶𝐶𝑡𝑡),                                                                 (8) 

The variable ℎ𝑡𝑡 represents the output value at time step 𝑡𝑡 , while 𝑊𝑊𝑜𝑜 and 𝑏𝑏𝑜𝑜 denote the 
weights and biases of the output gate, respectively. Finally, both the output ℎ𝑡𝑡 and the cell 
state 𝐶𝐶𝑡𝑡  are passed to the next unit, where the aforementioned computational process is 
repeated. 

3.3 Self-Attention LSTM Structure 

The structure of the Self-Attention-LSTM neural network is illustrated in Figure 3, 
consisting of a total of four layers within its architecture: 

 

Figure 3: Diagram of the Self-Attention LSTM Structure. 

(1) Input Layer: This layer preprocesses the data related to step frequency, stride length, and 
pace. It addresses any missing values and calculates the average values to generate input 
data for the neural network. If the length of the data is denoted as i, then the input vector 
can be represented as 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3,⋯ , 𝑥𝑥𝑖𝑖]𝑇𝑇. 

(2) In the LSTM layer, the input vector 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3,⋯ , 𝑥𝑥𝑖𝑖]𝑇𝑇 is processed according to the 
operational principles of the LSTM layer. This process enables the model to learn the 
relationships among various indicators and produces an output vector 𝑎𝑎 =
[𝑎𝑎1,𝑎𝑎2,𝑎𝑎3,⋯ ,𝑎𝑎𝑖𝑖]𝑇𝑇. 
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(3) In the Attention layer, data is processed in a manner illustrated in Figure 1, where the 
internal relationships among the elements of the learning metrics are computed 
repeatedly. Ultimately, this results in an output represented as 𝑏𝑏 = [𝑏𝑏1,𝑏𝑏2,𝑏𝑏3,⋯ , 𝑏𝑏𝑖𝑖]𝑇𝑇. 

(4) The output layer, represented by the vector 𝑏𝑏 = [𝑏𝑏1,𝑏𝑏2,𝑏𝑏3,⋯ , 𝑏𝑏𝑖𝑖]𝑇𝑇 , performs the final 
computation through a fully connected output layer. This process facilitates the learning 
tasks of input pacing and fitting for both cadence and stride length. Consequently, the 
output is obtained as 𝑌𝑌 = [𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,⋯ ,𝑦𝑦𝑖𝑖]𝑇𝑇. 

3.4 Model Loss Function 

 In this paper, we utilize MSE loss function to assess the model's fitting performance. The 
calculation formula is as follows: 

 
Loss function ∶=  

1
𝑡𝑡
�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

,                                                     (9) 

 

In this context, 𝑦𝑦�𝑖𝑖 represents the true data, while 𝑦𝑦𝑖𝑖 denotes the fitted data. A smaller 
Loss function indicates that the model's fit to the actual values exhibits a lower degree of error, 
thereby reflecting a more accurate fitting performance. 

4 RESULTS AND DISUSSION 

The subject of this study is a runner's records from three 5km runs. Utilizing this dataset, 
we aim to extract relevant running information about the athlete and further enhance the 
generalizability of our model. Through data preprocessing, we obtained metrics such as 
average cadence, average stride length, and average pace, resulting in a total of 100 data points. 
We selected 50 data points for training purposes and reserved another 50 for testing.  

4.1 Data Preprocessing 

Different features have varying units and significant differences in magnitude. Therefore, 
we first preprocess the data by calculating the average values for each group of features. We 
then determine the proportion of individual data points relative to their respective group 
averages. This process allows us to normalize the data within a consistent range, resulting in a 
scatter plot that illustrates the distribution of feature quantities over time (in kilometers). 
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Fig. 4: Scatter Distribution Diagram of Various Features. 

Figure 4 shows the variation of different variables over time, with blue dots representing 
pace points, orange dots representing stride length points, and green dots representing cadence 
points. Through a certain processing, all three are displayed on one graph, but their units are 
obviously different. The values on the horizontal axis represent different kilometers, with the 
unit being km. Different kilometers correspond to different times. 

The interpolation method is employed to transform the scatter plot into a continuous 
function graph. Additionally, the Savitzky-Golay filter is utilized to obtain a smoother 
representation of the function image. In this process, the filter's window length is set to 30, and 
a third-order polynomial fitting is applied. The signal extension type for the filter is selected as 
"nearest." 

  

Fig. 5: (a). Perform interpolation on the scatter plot. (b). Refining the interpolation function 
with a filter. 

4.2 Tuning of Hyperparameters 

The following section presents the hyperparameters related to the experimental process: 
1) Optimizer: The model employs the Adam optimizer. This optimizer has demonstrated 

excellent performance across various scenarios, with a learning rate set at 0.01. 
2) LSTM Layers: Typically, the number of LSTM layers is chosen to be between 1 and 2. 
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Through experimentation, it was determined that setting the LSTM layer count to 1 achieves 
satisfactory fitting results. 

3) Batch Size and Time Steps: In neural network training, batch processing is more efficient 
than single-instance training; thus, a batch size of batch_size = 5 is utilized. The temporal data 
points are segmented based on distance traveled, with a step size of 0.05 and a total length of 5 
units, resulting in a total of 100 data points. 

4) Comparative Model Structural Parameters: This study compares the fitting performance 
of Self-Attention-LSTM, conventional LSTM, and fully connected neural networks during both 
training and fine-tuning processes. The structural parameters for these comparative models are 
as follows: 

Table 1: Comparison of Model Structural Parameters. 

Conventional LSTM MLP Neural Network 

layer = 1 layer = 1 

hidden_size = 1 hidden_size = 16 

output_size = 1 output_size = 1 

5)  Iteration Counts: This paper includes two types of iteration counts, namely max_epoch 
and min_epoch, which correspond to the training on the training set and fine-tuning during 
testing, respectively. Based on experimental results, it is recommended that the values for these 
iteration counts be set as follows: max_epoch = 5000 and min_epoch = 100. 

4.3 Refinement of the Self-Attention LSTM Model Fitting Performance 

The model utilizes 50 data points as input, where the Self-Attention layer is responsible for 
learning the sequential features of stride and its own characteristics. Meanwhile, the LSTM 
layer focuses on understanding the relationship between stride frequency and pace. Upon 
completion of training, a fitted graph is produced. Figure 6 illustrates the fitting performance 
of the Self-Attention-LSTM model: 

  

Fig. 6: (a). Fitting the Relationship Between Stride and Pace in the Self-Attention LSTM 
Model. (b). Fitting the Relationship Between Frequency and Pace in the Self-Attention LSTM 

Model. 

The model requires only the input of stride length or cadence to automatically calculate 
the corresponding pace results. Due to the properties of the function, if the running pace is 
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known, it can also quickly deduce the relevant cadence and stride length. 

4.4 The fitting performance of the conventional LSTM model and the MLP model 

Under identical experimental conditions, a comparative study was conducted using the 
LSTM model and the MLP model. The results are illustrated in Figure 7. 

      

  

Fig. 7: (a)(b). The results of conventional LSTM Model. (c)(d). The results of MLP Model. 

The two upper images in Figure 6 illustrate the fitting performance of the LSTM model, 
while the two lower images depict the fitting results of the MLP model. After conducting an 
equal number of fine-tuning iterations, it is evident that the conventional LSTM model achieves 
a satisfactory fitting performance on this dataset. In contrast, the MLP neural network 
demonstrates subpar fitting results, with significant deviations between its fitted output and 
the actual data. 

4.5 Comparison of Errors Among Three Models 

Table 2 and Table 3 present the final training and testing errors for pace fitting based on 
three different models of stride length and frequency, respectively. 

Table 2: Errors in Stride and Pace Across Three Models. 

Train accuracy Test accuracy 

Self-Attention-LSTM: 2.07×10−5 Self-Attention-LSTM: 2.15×10−4 

LSTM: 3.33×10−5 LSTM: 2.72×10−4 
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MLP: 1.73×10−4 MLP: --- 

Table 3: Errors in Frequency and Pace Across Three Models. 

Train accuracy Test accuracy 

Self-Attention-LSTM: 3.10×10−5 Self-Attention-LSTM: 2.20×10−4 

LSTM: 5.54×10−5 LSTM: 4.35×10−4 

MLP:  2.01×10−3 MLP: --- 

 
Based on the experimental results, it was found that the Self-Attention-LSTM model 

exhibits a fitting performance comparable to that of the conventional LSTM model, with a slight 
advantage for the Self-Attention-LSTM. In contrast to the MLP model, the Self-Attention-LSTM 
significantly enhances training effectiveness on the training set, and its fitted images on the test 
set align more closely with real data. 

5 CONCLUSION 

This study investigates the application of a Self-Attention LSTM model to fit variations in 
running pace, utilizing metrics such as cadence, stride length, and pace to learn feature 
relationships. The model takes cadence, stride length, and pace as inputs and employs self-
attention mechanisms to capture the intrinsic relationships within the feature sequences. 
Additionally, it utilizes LSTM methods to understand inter-feature relationships, thereby 
establishing correspondences among features that enable real-time feedback on data values at 
any given moment. Experiments conducted using 5 km running data yield the following 
conclusions: 

(1) The Self-Attention-LSTM is well-suited for processing time series data. This model 
integrates the advantages of both methodologies, allowing for improved learning of 
relationships between data points compared to traditional fully connected networks. 

(2) When comparing Self-Attention-LSTM with conventional LSTM methods, the former 
demonstrates superior performance. This advantage arises from the self-attention mechanism's 
ability to consider direct connections between different parts of a sequence during processing 
rather than relying solely on sequential information transfer. Such a global perspective 
enhances the model's understanding of complex structures inherent in sequence data. 

(3) The accuracy achieved by employing Self-Attention-LSTM for fitting variations in 
running pace is notably high, with errors reaching an order of magnitude around . This 
approach can be generalized across various running scenarios and offers valuable insights for 
training practices in running. 
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