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ABSTRACT 

Helicopters are critical aerial platforms, and their operational capability in complex 
environments is crucial. However, their performance in dark and foggy conditions is limited, 
particularly in ground target recognition using onboard cameras due to poor visibility and 
lighting conditions. To address this issue, we propose a YOLOv8-based model enhanced to 
improve ground target recognition in dark and foggy environments. The MS block is a multi-
scale feature fusion module that enhances generalization by extracting features at different 
scales. The improved Residual Mobile Block (iRMB) incorporates attention mechanisms to 
enhance feature representation. SCINet, a spatial-channel attention-based network, adaptively 
adjusts feature map weights to improve robustness. UnfogNet, a defogging algorithm, 
enhances image clarity by removing fog. This integrated approach significantly improves 
ground target recognition capabilities. Unlike traditional models, AOD-Net generates clean 
images via a lightweight CNN, making it easily integrable into other deep models. Our MISU-
YOLOv8 model outperforms recent state-of-the-art real-time object detectors, including 
YOLOv7 and YOLOv8, with fewer parameters and FLOPs, improving YOLOv8's Average 
Precision (AP) from 37% to over 41%. This work can also serve as a plug-and-play module for 
other YOLO models, this advancement provides robust technical support for helicopter 
reconnaissance missions in complex environments. 

Keywords: YOLOv8; Multi-Scale Block; Inverted Residual Mobile; Self-Calibrated 
Illumination; Dehazing; Object Detection 
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1 INTRODUCTION 

With the continuous development of modern warfare and civilian applications, helicopters 
are increasingly tasked with operations and rescue missions in complex environments. Dark 
and foggy conditions pose higher demands on the navigation and target recognition 
capabilities of helicopters. When helicopters perform missions at night or under low visibility 
conditions, their onboard cameras face significant challenges. Insufficient lighting results in 
decreased image quality, making it difficult to extract target features [1]. The increased noise 
and interference in dark environments further complicate target recognition. Additionally, the 
dynamic changes during helicopter flight demand higher stability and accuracy in target 
recognition.  

The resolution of issues such as the determination and prevention of traffic accidents at 
night, the prevention of forest fires captured by surveillance cameras, nighttime facial 
recognition for theft prevention, and nighttime reconnaissance along national borders all rely 
on low-light image processing technology [2]. On the other hand, high-level visual tasks (such 
as target detection and semantic segmentation) that benefit from improved image quality are 
also of significant research value [3]. However, in the process of acquiring low-light images, 
factors such as insufficient ambient light, obstructions, and equipment limitations often result 
in low-quality images characterized by insufficient brightness, blurriness, and excessive noise. 
To obtain clear and informative images, Chen et al. processed the acquisition equipment and 
extended the exposure time to achieve better results, but this inevitably caused blurring due to 
jitter and object movement [4]. Increasing the sensitivity directly can enhance image brightness, 
but it also increases noise. Therefore, the study of low-light image enhancement algorithms at 
the image processing level has become a topic of great significance. 

2 RELEATED WORK 

Aerial recognition employs an overhead perspective, with varying flight altitudes and 
constantly changing target directions [5]. The captured image ranges vary in size; the higher 
the flight altitude, the higher the content of small ground targets, making recognition more 
challenging. Images taken from the ground and general recognition algorithms are not suitable 
for this purpose. Concurrently, with the continuous development of deep learning, the 
recognition accuracy of deep learning algorithm network models is continuously improving 
[6]. However, this is accompanied by increasing network complexity, higher computational 
demands, and larger model weight files, making complex network models difficult to deploy 
in practice. Therefore, it is necessary to lighten the recognition model for easy transplantation 
to embedded devices [7]. 

In response to such issues, many scholars have conducted research. For example, Qiao 
Mengyu et al. (2020) inserted the ELU function as an activation function into the lightweight 
MobileNet network, and the improved algorithm surpassed mainstream lightweight target 
detection algorithms in both detection accuracy and recognition speed of military targets on 
the battlefield [8]. Liu Kang et al. improved the Yolov5 by incorporating a channel-spatial 
attention mechanism to enhance target feature extraction capability and adopting the α-CIoU 
loss function as the bounding box loss function, resulting in a 6.4% accuracy improvement [9]. 
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Qiu Hao et al. introduced a lightweight channel attention mechanism into Yolov5n to enhance 
the extraction of effective information from feature maps, added an adaptive spatial feature 
fusion module, and used the EIoU loss function to accelerate convergence and improve 
detection accuracy, achieving a 6.1% accuracy improvement [10]. Niu Weihua et al. integrated 
a small target detection layer into the aggregation network structure of Yolov7 and 
incorporated a channel-spatial attention mechanism in the backbone network, introducing the 
SioU Loss localization loss function, resulting in a 2.8% accuracy improvement [11]. Fu Jinyi et 
al. replaced the convolution modules of the head and neck with a partial convolution of channel 
features, embedded CAM to enhance the perception of deep feature details, and achieved an 
8.7% improvement in small target detection accuracy [12]. 

YOLOv8 is the latest version in the YOLO series, distinguished by its high efficiency, 
accuracy, and minimal model memory usage. Based on YOLOv8, we propose a dark and foggy 
target recognition model called MISU-YOLOv8, tailored for challenging helicopter detection in 
complex environments. The main contributions are as follows: 

Dataset Construction: We compiled a ground object detection dataset covering 20 types of 
common ground targets. Strict screening ensured that only high-quality photos were included, 
followed by manual annotation to accurately depict the ground targets. 

Innovative Technologies: Our method integrates several advanced techniques: multi-scale 
block, inverted residual mobile, self-calibrated illumination, and dehazing. These technologies 
effectively reduce model parameters, mitigate overfitting, and lower computational and 
memory requirements. Additionally, our method significantly enhances the model's accuracy 
in recognizing ground targets. 

MISU-YOLOv8 Method: We introduce the MISU-YOLOv8 method, which is lighter and 
more accurate than the original YOLOv8 method. It features fewer parameters, fewer FLOPS, 
higher FPS, and easier deployment, thus delivering superior performance. 

3 MODEL ESTABLISHMENT AND SOLUTION 

3.1 Model Structure of the YOLOv8s Network 

YOLOv8, building on YOLOv5, incorporates both BoS (Bag of Specials) and BoF (Bag of 
Freebies) strategies for improvements. First, the CSP module in the backbone network has been 
modified. The C2f module combines contextual information and high-level features through 
cross-stage partial bottlenecks and two convolution operations, enhancing detection 
performance. The BoF strategy's DFL (Distribution Focal Loss) can handle continuous labels, 
optimizing both classification and bounding box regression, which further improves the 
detection performance for small targets. A standout feature of YOLOv8 is its modular design, 
making it easy to extend and modify, thus improving the model's scalability. It supports 
multiple export formats and can run on both CPUs and GPUs, offering efficient model 
deployment capabilities. However, a drawback is the continued use of the FPN-like neck, 
which can result in information loss during cross-layer interactions. 
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Fig. 1: YOLO v8 model structure 

3.2 Multi-Scale Building Block Design 

Based on previous analysis, we introduce an innovative block named the MS-Block, 
incorporating a hierarchical feature fusion strategy to improve the performance of real-time 
object detectors in capturing multi-scale features while ensuring rapid inference speed. Let 𝑋𝑋 ∈
𝑅𝑅𝑅𝑅 × 𝑊𝑊 × 𝐶𝐶  represent the input feature. After undergoing a 1×1 convolution, the channel 
dimension of 𝑋𝑋  is expanded to 𝑛𝑛 × 𝐶𝐶 . Subsequently, 𝑋𝑋  is divided into n distinct groups, 
denoted as 𝑋𝑋𝑖𝑖  where 𝑖𝑖 ∈ 1, 2, 3, . . . ,𝑛𝑛 . To reduce computational expense, we set 𝑛𝑛  to 3. It's 
important to note that aside from 𝑋𝑋1, each group is processed through an inverted bottleneck 
layer, indicated by 𝐼𝐼𝐼𝐼𝐼𝐼 × 𝐼𝐼( )  where 𝐼𝐼  denotes the kernel size, to produce 𝑌𝑌𝑖𝑖 . The 
mathematical expression for 𝑌𝑌𝑖𝑖 is as follows: 

 

Fig. 2: Structure diagram of mult-scale building block 

The MS_block takes the feature maps output by the attention prediction sub-network as 
the input for the sub-model. It then undergoes a 3×3 convolution kernel, two 3×3 stacked 
convolution blocks (equivalent to a 5×5 receptive field), and a combination of ordinary 3×3 and 
3×3 dilated convolutions (dilation rate = 2, equivalent to a 7×7 receptive field). After three layers 
of convolutional processing, the features are fused and then compressed using a 1×1 
convolution kernel to reduce the number of channels. Finally, the features are merged with 
those processed only by a 1×1 convolution and output to the next module. Different receptive 
fields can extract different targets, and multi-receptive field extraction is beneficial for 
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discovering more defect features.  
This network is improved based on the Feature Pyramid Network (FPN) and Path 

Aggregation Network (PANet) to facilitate effective interaction and information transfer 
between features at different scales. FPN constructs a feature pyramid in a top-down manner, 
integrating feature maps of different resolutions and semantic levels, thereby enhancing the 
expression capabilities at each level. A content-aware feature reorganization module is 
introduced into the FPN, which dynamically generates adaptive upsampling kernels based on 
the input features, reorganizing and pooling the input features to improve the semantic quality 
and multi-scale adaptability of the upsampled feature maps. Specifically, BMFFN first reduces 
the dimensionality of the channels for the three scales C3, C4, C5 output by the backbone 
network. Then, each scale is added to the result of the upsampling of the next lower layer in a 
top-down manner to obtain the fused feature maps of the three scales P3, P4, P5. This enriches 
the semantic information at each scale while maintaining high spatial resolution. 

PANet, or the Feature Pyramid Attention Network, performs downsampling and fusion 
operations on feature maps of different scales in a bottom-up manner. It employs a max-
pooling module based on modulated deformable convolution to enhance the adaptability and 
expression capability of the features, thereby improving the detail information and 
complementarity of the features. Specifically, PANet first increases the dimensionality of the 
channels for the three scales of fused feature maps P3, P4, P5 output by the FPN. Then, starting 
from the smallest scale, each scale's feature map is added to the downsampled feature map of 
the next layer to obtain the fused feature maps of three scales N3, N4, N5. This enhances the 
connections between different scales. By combining FPN and PANet, a bidirectional multi-scale 
feature fusion is achieved, making full use of feature information at different scales, thereby 
improving the performance of object detection. 

In the MS-Block, the hierarchical feature fusion strategy plays a crucial role. This strategy 
allows the MS-Block to effectively handle multi-scale features, which is vital for the accurate 
detection of objects of varying sizes in real-time applications. The design ensures that the 
process remains computationally efficient, which is critical for maintaining the speed required 
in real-time systems. By increasing the channel dimension via a 1×1 convolution and then 
splitting the input into distinct groups, the MS-Block leverages the inverted bottleneck layers 
to refine each group except for the first one. This approach balances the need for detailed 
feature extraction with the necessity of keeping the computational load manageable. 

𝑌𝑌𝑖𝑖 = �
𝑋𝑋𝑖𝑖 , 𝑖𝑖 = 1
𝐼𝐼𝐼𝐼𝑘𝑘×𝑘𝑘(𝑌𝑌𝑖𝑖−1 + 𝑋𝑋𝑖𝑖)    𝑖𝑖 > 1 (1) 

In accordance with the formula, we avoid connecting the inverted bottleneck layer to 𝑋𝑋1. 
This approach enables 𝑋𝑋1  to function as a cross-stage connection, thereby retaining 
information from previous layers. This preservation of earlier information is crucial for 
maintaining the integrity and continuity of the feature extraction process. Once all splits are 
processed, we concatenate them and apply a 1×1 convolution. This step is essential for allowing 
interaction among the splits, each of which encodes features at different scales. The 1×1 
convolution not only merges these multi-scale features but also standardizes the channel 
numbers, which is particularly important as the network architecture becomes more complex 
and deeper. 
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3.2 Inverted Residual Mobile Block 

The inverted residual structure first performs a 1x1 convolution for dimension expansion 
on the residual module, then carries out depthwise convolution, and finally uses projection 
convolution for dimension reduction. This structure initially uses an expansion factor a (with 
a set to 2 in this paper) to expand the input feature map's channels by C times a, thereby 
obtaining rich shallow features. Following this, a 1x1 convolution is applied for dimension 
expansion, which allows the acquisition of graphical features after expansion. The depthwise 
convolution structure splits the single step of standard convolution into two steps: first, 
depthwise convolution is performed using M convolution kernels of size 𝐷𝐷𝐾𝐾  times 𝐷𝐷𝐾𝐾  and 
depth 1, and then pointwise convolution is performed using N convolution kernels of size 1x1 
and depth 𝑀𝑀 . The depthwise convolution is responsible for filtering, while the pointwise 
convolution is responsible for channel transformation. The standard convolution parameters 
are 𝐶𝐶1, and the depthwise convolution parameters are 𝐶𝐶2. 

𝐶𝐶2
𝐶𝐶1

=
𝐷𝐷K
2𝑀𝑀𝐷𝐷F

2𝑁𝑁
𝐷𝐷K
2𝑀𝑀𝐷𝐷F

2 + 𝑀𝑀𝑁𝑁𝐷𝐷F
2 =

1
𝑁𝑁

+
1
𝐷𝐷K
2 (2) 

Compared to standard convolution, depthwise convolution reduces the number of model 
parameters, thereby improving the model's real-time detection capability. Finally, during the 
dimensionality reduction operation, the Linear activation function is used instead of the ReLu6 
activation function, effectively reducing the information loss caused by the nonlinear activation 
function. Based on the inductive Meta-Mobile Block, we present an advanced and efficient 
modern Inverted Residual Mobile Block (iRMB) from a detailed perspective. 

 

Fig. 3: Paradigm of iRMB 

The function 𝐹𝐹  in iRMB is modeled as a combination of Multi-Head Self-Attention 
(MHSA) and Convolution operations, formulated as 𝐹𝐹( ) = 𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶(𝑀𝑀𝑅𝑅𝑀𝑀𝑀𝑀( )). 

Table 1: A toy experiment for assessing iRMB. 

Model Params↓ FLOPs↓ Top-1↑ 

DeiT-Tiny 5.7M 1258 72.2 

DeiT-Tiny w/iRMB 4.9M-14%↓ 1102 -156M↓ 74.3 +2.1%↑ 

PVT-Tiny 13.2M 1943 75.1 

PVT-Tiny w/iRMB 11.7M -11%↓ 1845 -98M↓ 75.4 +0.3%↑ 

Following the criteria outlined, the function 𝐹𝐹 in iRMB is modeled as a combination of 
Multi-Head Self-Attention (MHSA) and Convolution operations, formulated as 𝐹𝐹( ) =
𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶(𝑀𝑀𝑅𝑅𝑀𝑀𝑀𝑀( )) . This design integrates the efficiency of Convolutional Neural Networks 
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(CNNs) for local feature modeling with the dynamic capability of Transformers for learning 
long-distance interactions. However, a straightforward implementation can be prohibitively 
expensive for two main reasons, first, The factor 𝜆𝜆 is typically greater than one, meaning the 
intermediate dimension is a multiple of the input dimension. This leads to a quadratic increase 
in parameters and computations with respect to 𝜆𝜆 . Therefore, the components of F should 
either be independent of or linearly dependent on the number of channels. secondly, The 
floating point operations (FLOPs) for MHSA scale quadratically with the total number of image 
pixels, making the cost of a naive Transformer implementation prohibitive. 

To balance model cost and accuracy, we employ efficient Window-MHSA (W-MHSA) and 
Depth-Wise Convolution (DW-Conv) with a skip connection. The parameters and FLOPs 
required for obtaining queries Q and keys K in W-MHSA are quadratic with respect to the 
channel dimension. To mitigate this, we use the unexpanded input 𝑋𝑋 to calculate the attention 
matrix more efficiently, i.e., 𝑄𝑄 = 𝐾𝐾 = 𝑋𝑋(𝑋𝑋 ∈ 𝑅𝑅^𝐶𝐶 × 𝑅𝑅 × 𝑊𝑊) , while the expanded value 𝑋𝑋𝑒𝑒 
serves as the value matrix 𝑉𝑉(𝑉𝑉 ∈ 𝑅𝑅^𝜆𝜆𝐶𝐶 × 𝑅𝑅 × 𝑊𝑊) . This improvement, termed Expanded 
Window MHSA (EW-MHSA), is more practical and is formulated as: 

ℱ(⋅) = (𝐷𝐷𝑊𝑊 − 𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶, 𝑀𝑀𝐼𝐼𝑖𝑖𝑆𝑆)�𝐸𝐸𝑊𝑊 −𝑀𝑀𝑅𝑅𝑀𝑀𝑀𝑀(⋅)�. (3) 

This passage explains an efficient implementation strategy for a particular type of neural 
network operation, specifically within the context of Multi-Head Self-Attention (MHSA). 
MHSA is typically used in scenarios where the number of channels (features) remains 
consistent (𝜆𝜆 = 1) . When the channels expand (𝜆𝜆 > 1) , the number of floating points 
operations (FLOPs) required for multiplying the attention matrix by the expanded input (𝑋𝑋𝑒𝑒) 
increases significantly by a factor of 𝜆𝜆 − 1. However, the transformation from the original input 
(𝑋𝑋) to the expanded input (𝑉𝑉) involves only linear operations, such as those performed by a 
Multi-Layer Perceptron (MLPe). The key proposition is that when the number of groups in the 
MLPe matches the number of heads in the weighted MHSA (W-MHSA), the result of their 
operations remains unchanged even if the order of operations is swapped. This means you can 
perform matrix multiplication before applying the MLPe to reduce the overall computational 
cost (FLOPs). By default, the implementation uses matrix multiplication before applying the 
MLPe to achieve this efficiency. 

3.3 Self-calibration Illumination 

This paper introduces the Self-Calibrated Illumination (SCI) algorithm to enhance coal 
flow foreign object images on belt conveyors. The SCI algorithm is an unsupervised learning 
algorithm based on Retinex theory. By constructing a progressive illumination optimization, it 
establishes a cascading illumination learning process with weight sharing and introduces a self-
calibration module. This defines an unsupervised training loss to achieve rapid, flexible, and 
robust image enhancement in low-light scenarios. According to the previously introduced 
Retinex image decomposition theory, an image can be considered as the product of the object 
reflection image and the illumination image. The object reflection image represents the inherent 
properties of the object, unaffected by illumination, and by estimating the illumination image, 
the reflection image can be calculated to enhance the image. Similarly, a low-light image can 
be considered as the product of a clear image and an illumination image. 
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Among 𝑌𝑌 = 𝑍𝑍⊗ 𝑋𝑋 ,  𝑌𝑌  represents the low-light image; 𝑍𝑍  represents the clear image 
unaffected by illumination, which is the enhanced image; 𝑋𝑋 represents the illumination image, 
which is the main enhancement modification in our method; In previous research, it was 
common to estimate the illumination image to eliminate the estimated illumination image to 
obtain a clear image unaffected by illumination, thereby enhancing the low-light image. The 
self-calibrated illumination learning algorithm was inspired by the multi-stage illumination 
optimization process in deep learning, constructing a progressive illumination optimization 
process. 

𝐹𝐹(𝑋𝑋𝑡𝑡): �
𝑋𝑋0 = 𝑌𝑌
𝑢𝑢𝑡𝑡 = 𝑅𝑅𝜃𝜃(𝑋𝑋𝑡𝑡)
𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡 + 𝑢𝑢𝑡𝑡

(4) 

Among them, 𝑋𝑋𝑡𝑡   and 𝑈𝑈𝑡𝑡 represent the illumination image and residual term at stage t 
respectively. The residual term 𝑈𝑈𝑡𝑡   is the update parameter of the progressively updated 
illumination image 𝑋𝑋𝑡𝑡 , which also represents the reflection relationship between the 
illumination image 𝑋𝑋  and the low-light image 𝑌𝑌 ; 𝑅𝑅𝜃𝜃   represents the illumination image 
estimation network, which learns the residual term through 𝑈𝑈𝑡𝑡  parameterized calculation 𝜃𝜃. 
It is noteworthy that at each stage of learning the illumination image, the framework and 
weights of the illumination image estimation network are the same. Currently, most scholars' 
research on low-light image enhancement is based on the theory that there is a linear 
relationship between normal-light and low-light images. Illumination image learning with 
weight sharing learns the residuals to map between normal-light and low-light images, thereby 
reducing computational complexity while ensuring performance and stability. However, since 
the aforementioned method constructs a progressive illumination image optimization process, 
the multiple weight-sharing stages inevitably increase inference costs. Therefore, it is necessary 
to design a calibration module so that the results of each stage converge to the same value. This 
way, during the testing phase, only the results of the first stage are needed for image 
enhancement, thereby reducing computational costs. 

𝐺𝐺(𝑋𝑋𝑡𝑡):�
𝑍𝑍𝑡𝑡 = 𝑌𝑌 ⊗ 𝑋𝑋𝑡𝑡 ,
𝑀𝑀𝑡𝑡 = 𝐾𝐾𝜗𝜗(𝑍𝑍𝑡𝑡),
𝑉𝑉𝑡𝑡 = 𝑌𝑌 + 𝑀𝑀𝑡𝑡

(5) 
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Fig. 4: Self-calibrating illumination learning process 

The previously introduced weight-sharing illumination image learning takes the input of 
each stage from the output of the previous stage (except for the first stage), with the initial input 
being the low-light image. The self-calibration module connects the low-light image with the 
input of each stage, enabling the exploration of convergence behavior between stages and 
ultimately achieving the goal of balancing the convergence results of each stage. a schematic 
diagram is presented in Figure 4. 

3.4 Unfog Network base on AOD-Net 

Riding the wave of deep learning, dehazing algorithms based on deep learning have also 
made significant progress. Compared to traditional methods, deep learning algorithms 
generally achieve better dehazing effects and are often end-to-end approaches. Examples 
include DehazeNet, which combines dark channel, color attenuation prior, and maximum 
contrast, or the Gated Context Aggregation Network (GCANet) that employs adversarial 
learning. Each of these deep learning algorithms has its own advantages. However, since this 
paper focuses on vehicle and pedestrian detection in foggy weather, there are higher 
requirements for the real-time performance and lightweight nature of the dehazing algorithm. 
Therefore, this paper ultimately adopts the smaller and more real-time AOD-Net. AOD-Net is 
a lightweight dehazing network based on deep learning. This algorithm also relies on the 
atmospheric dehazing model, but the difference is that AOD-Net merges the atmospheric 
transmission 𝑡𝑡(𝑥𝑥) and atmospheric light value A into a single 𝐾𝐾(𝑥𝑥). 

𝐾𝐾(𝑥𝑥) =

1
𝑡𝑡(𝑥𝑥) (𝐼𝐼(𝑥𝑥) − 𝑀𝑀) + (𝑀𝑀 − 𝑏𝑏)

𝐼𝐼(𝑥𝑥) − 1
(6) 

b is a constant bias with a value of 1. AOD-Net integrates the atmospheric light value and 
the atmospheric transmission rate, simplifying the conversion relationship between foggy and 
non-foggy images and reducing error. Now, by simply knowing the value of 𝐾𝐾(𝑥𝑥) , a clear 
image can be generated. The central idea of AOD-Net is thus revealed: by establishing an 
adaptive deep model, it uses a convolutional neural network to estimate the 𝐾𝐾 value from the 
input foggy images. Once the 𝐾𝐾  value is obtained, a new fog-free image can be generated 
through the clear image generation module according to the transformed formula. 
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Fig. 5: The structure of the AOD-Net model 

This paper introduces dynamic convolution to replace the standard convolution in the 
AOD-Net network. Based on the input attention mechanism, dynamic convolution aggregates 
multiple parallel convolution kernels. Since dynamic convolution uses smaller convolution 
kernels, it achieves higher computational efficiency. Additionally, because these convolution 
kernels are aggregated in a nonlinear manner, dynamic convolution has a stronger feature 
representation capability. 𝑦𝑦𝑧𝑧 = 𝑔𝑔(𝑊𝑊𝑧𝑧

𝜋𝜋 + 𝑏𝑏), W and b are the weight matrix and bias vector, 
respectively, and g is the activation function. 

𝑦𝑦𝑑𝑑 = 𝑔𝑔 �𝑊𝑊� 𝑇𝑇(𝑥𝑥)𝑥𝑥 + 𝑏𝑏�(𝑥𝑥)� (7) 

𝑊𝑊� (𝑥𝑥) = � 
𝜅𝜅

𝑘𝑘=1

𝜋𝜋𝑘𝑘(𝑥𝑥)𝑊𝑊�𝑘𝑘 (8) 

𝑏𝑏�(𝑥𝑥) = � 
𝜅𝜅

𝑘𝑘=1

𝜋𝜋𝑘𝑘(𝑥𝑥)𝑏𝑏�𝑘𝑘 (9) 

𝜋𝜋 is the weight vector of the 𝐼𝐼 th linear function, and this weight vector varies with 𝑥𝑥. The 
dynamic perceptron is a combination of linear models of the input, thus possessing stronger 
fitting capabilities. 

The ECA (Efficient Channel Attention) module is an improved attention module based on 
SENet. This module adds only a small number of parameters while significantly enhancing 
performance. its computational process is as follows: 

Calculate the average value of each channel 

𝑀𝑀𝑐𝑐 =
1

𝑅𝑅 × 𝑊𝑊
� 
ℎ

𝑖𝑖=1

�  
𝑊𝑊

𝑗𝑗=1

𝑋𝑋𝑐𝑐𝑖𝑖𝑗𝑗 (10) 

Here, 𝑋𝑋 is the input feature map, 𝐶𝐶 is the channel index representing a specific channel 
in the feature map, and 𝑖𝑖 and 𝑗𝑗 are spatial dimension indices representing a specific position 
in the feature map, where  𝑖𝑖  indicates the height dimension and  𝑗𝑗  indicates the width 
dimension. Apply a learnable scaling factor. 

𝑀𝑀𝑐𝑐
′ = 𝜃𝜃(𝑀𝑀𝑐𝑐) = 𝑊𝑊𝜃𝜃 ⋅ 𝑀𝑀𝑐𝑐 (11) 

Here, 𝑊𝑊𝜃𝜃  is a learnable weight parameter matrix used to adjust the average value. 

𝑀𝑀𝑐𝑐 = 𝜎𝜎(𝑀𝑀𝑐𝑐
′) =

1
1 − 𝑒𝑒𝑥𝑥𝑆𝑆(−𝑀𝑀𝑐𝑐

′)
(12) 

Here, 𝜎𝜎 is the Sigmoid function, used to map the scaled average value to the attention 
weight within the range of (0,1). 𝑌𝑌𝑐𝑐𝑖𝑖𝑗𝑗 = 𝑀𝑀𝑐𝑐 ⋅ 𝑋𝑋𝑐𝑐𝑖𝑖𝑗𝑗 , 𝑌𝑌𝑐𝑐𝑖𝑖𝑗𝑗   is the feature value with the applied 
attention weight. Finally, the output feature map weighted by the ECA attention is obtained. 

AOD-Net uses a single mean squared error (MSE) loss function to measure the squared 
difference between the predicted and true values, which can easily lead to local optima. This 
paper adopts the MS-SSIM-L2 loss function to replace the original MSE loss function to enhance 
the dehazing performance of the entire network. First, the SSIM value for each scale is 
calculated, and then they are weighted and averaged to obtain the MS-SSIM value. The scale 
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index s usually ranges from 1 to n. 

𝑀𝑀𝑀𝑀𝐼𝐼𝑀𝑀𝑠𝑠(𝐺𝐺,𝑇𝑇) =
2𝜇𝜇𝐺𝐺𝜇𝜇𝑇𝑇 + 𝑐𝑐1
𝜇𝜇𝐺𝐺2 + 𝜇𝜇𝐺𝐺2 + 𝑐𝑐1

⋅
2𝜎𝜎𝐺𝐺𝑇𝑇 + 𝑐𝑐2

𝜎𝜎𝐺𝐺2 + 𝜎𝜎𝑇𝑇2 + 𝑐𝑐2
(13) 

𝑀𝑀𝑀𝑀 − 𝑀𝑀𝑀𝑀𝐼𝐼𝑀𝑀(𝐺𝐺,𝑇𝑇) =
1
𝑁𝑁
�  
𝑁𝑁

𝑠𝑠=1

𝑀𝑀𝑀𝑀𝐼𝐼𝑀𝑀𝑠𝑠(𝐺𝐺,𝑇𝑇) (14) 

Here, 𝜇𝜇𝐺𝐺 and 𝜇𝜇𝑇𝑇 are the means of the generated image and the target image, respectively, 
𝜇𝜇𝐺𝐺 and 𝜇𝜇𝑇𝑇  are their standard deviations, 𝜇𝜇𝐺𝐺𝑇𝑇  is their covariance, 𝑐𝑐1  and 𝑐𝑐2  are stability 
constants, and 𝑁𝑁 is the number of scales.  

𝐿𝐿2(𝐺𝐺,𝑇𝑇) =
1

𝐶𝐶 × 𝑅𝑅 × 𝑊𝑊
� 
𝐶𝐶

𝑐𝑐=1

�  
𝐻𝐻

𝑖𝑖=1

�  
𝑤𝑤

𝑗𝑗=1

(𝐺𝐺𝑐𝑐𝑖𝑖𝑗𝑗 − 𝑇𝑇𝑐𝑐𝑖𝑖𝑗𝑗)2                                      (15) 

The L2 loss measures the pixel-level differences between the generated image and the 
target image. 

𝑀𝑀𝑀𝑀 − 𝑀𝑀𝑀𝑀𝐼𝐼𝑀𝑀 − 𝐿𝐿2 = 𝛼𝛼 ⋅ 𝑀𝑀𝑀𝑀 − 𝑀𝑀𝑀𝑀𝐼𝐼𝑀𝑀(𝐺𝐺,𝑇𝑇) + 𝛽𝛽 ⋅ 𝐿𝐿2(𝐺𝐺,𝑇𝑇) (16) 

The final MS-SSIM-L2 loss combines the MS-SSIM and L2 losses in a weighted manner. 
Here, 𝛼𝛼 and 𝛽𝛽 are weight coefficients used to balance the relative influence of the MS-SSIM 
and L2 losses. Compared to the previous single mean squared error loss function, the 
composite loss function proposed in this section improves both brightness and contrast, 
making it the chosen final objective loss function for the algorithm in this paper. 

4 EXPERIMENTAL RESULTS AND ANALYSIS 

4.1 Data sources 

This section may be divided by subheadings. It should provide a concise and precise 
description of the experimental results, their interpretation, as well as the experimental 
conclusions that can be drawn. 

Due to the limited availability of datasets featuring ground objects from a helicopter 
perspective, the following types of ground target datasets were found online: UC Merced Land-
Use Data Set, DOTA, and TGRS-HRRSD-Dataset. These three datasets all contain number of 
ground object photos; however, because the DOTA and TGRS-HRRSD-Dataset datasets have 
fewer categories for ground object classification, the dataset established by the University of 
California, Merced, was selected for this paper. The UC Merced Land-Use Dataset includes a 
total of 20 categories of scene images, each category has 100 images, totaling 2,000 images. 

4.2 Data preprocessing 

To enhance the robustness of the neural network, reduce model dependency, and prevent 
overfitting due to a small training dataset, the UC Merced Land-Use dataset was subjected to 
data augmentation. The data augmentation methods include the following four types: single-
sample data augmentation, multi-sample data augmentation, generating new data, and 
learning augmentation strategies. Since the UC Merced Land-Use dataset requires geometric 
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operations and color transformations on the images, the data augmentation method adopted 
in this paper is single-sample data augmentation. By applying 11 methods, each image in the 
original dataset was expanded to 12 times its original size. 

 

Fig. 6: Image processing effect 

4.3 Experimental Environment 

This experiment is based on the Windows system. The specific experimental environment, 
related configuration information, and initial parameter information are shown in Tables 3 and 
4. 

Table 3: Experimental Environment and Configuration 

Name Specification 

Operating System Windows 11 

CPU Intel(R) Core(TM) i9-10920X CPU @ 3.50 GHz, 32 GB RAM 

GPU Nvidia RTX 3090 ×2 

Framework TensorFlow 2.0 

Environment Config Python 3.6, scipy 1.5.4, keras 2.3.1, matplotlib 3.3.3, numpy 1.9.5, pandas 1.1.5, pillow 

8.4.0 

Name Specification 

Table 4: Initial Parameter Settings 

Parameter Value 

lr 0.0006 

betas 0.89 

betas2 0.98 

batch_size 32 

image_size 64×64 

epoch 200 

To verify the superiority of ground target recognition based on the MISU-YOLOv8 method, 
training data from five different network models were selected for comparison. Under the same 
training parameter settings, the training and validation were conducted for these five network 
models. After smoothing the training accuracy curves, the results are shown in Figure 7. 
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Fig. 7: Traning Accuracy Curves for 6 Models 

In Figure 7, the YOLOv8 network model refined through transfer learning is denoted as 
MISU-YOLOv8. The figure illustrates that, with increasing iterations, the training accuracy of 
all five network models consistently improves and gradually stabilizes. Except for the 
YOLOv3-tiny network model, the training accuracy of the remaining four network models 
exceeds 93%. Among these models, MISU-YOLOv8 exhibits the fastest convergence rate, while 
YOLOv3-tiny is the slowest. After approximately 600 iterations, MISU-YOLOv8 achieves a 90% 
training accuracy and quickly converges to 100% after 900 iterations. Conversely, the 
SqueezeNet model reaches 98% training accuracy only after 1500 iterations. The training 
accuracy curves of the other four models are similar, with final training results ranging between 
94% and 99%. The training outcomes demonstrate that the MISU-YOLOv8 network, refined 
through transfer learning, surpasses the other five networks in both convergence speed and 
training accuracy. 

 

Fig. 8: confusion matrix quantiative (a) confusion matrix quantiative of YOLOv8n; (b) 
confusion matrix quantiative of MISU-YOLOv8 

The test results indicate that the overall recognition rate of the MISU-YOLOv8 network 
model can reach 91.68%, while the overall recognition rate of the YOLOv8 network model is 
only 75.89%. The MISU-YOLOv8 network model has an average prediction accuracy of over 
80% for 20 types of targets, whereas the YOLOv8 network model only has three types of targets 
with a prediction accuracy of over 80%. In summary, the MISU-YOLOv8 network model 
performs excellently in recognizing ground targets, achieving very high accuracy in ground 
target recognition. 
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Classify the distribution of the extracted bounding boxes of image data. Using the image 
center as the origin, measure the coordinates of the center points of each edge of the bounding 
boxes in image recognition. Perform two-dimensional and three-dimensional statistics, with 
the results shown in Figure 9 and Figure 10. 

 

Fig. 9: data extraction frame frequency 2D histogram (a) ata extraction frame frequency 2D 
histogram of YOLOv8n; (b) ata extraction frame frequency 2D histogram of MISU-YOLOv8 

 

Fig. 10: Overlapping line plot of width and height distribution (a) Overlapping line plot of 
width and height distribution of YOLOv8n; (b) Overlapping line plot of width and height 

distribution of MISU-YOLOv8 

Compared to YOLOv8, MISU-YOLOv8 shows significant improvements. The distribution 
of bounding boxes is more concentrated, exhibiting better fitting uniformity in all directions 
and closer to a normal distribution. MISU-YOLOv8 has 127 and 116 bounding boxes at the most 
densely distributed positions for width and height, respectively. The peak differences in width 
and height are small, indicating high data fitting accuracy. 

Table 5: Comparison of results of different models 

Simulations P/% R/% mAP/% F1/% FPS 

YOLOv3-tiny 79.74 80.17 81.83 78.86 561 

YOLOv4-tiny 80.78 75.14 82.28 78.81 228 

YOLOv5n 79.63 75.18 82.13 76.81 322 

YOLOv7-tiny 82.03 73.76 81.68 76.40 351 

YOLOv8n 78.93 75.40 80.08 77.68 521 

MISU-YOLOv8 80.97 80.91 88.17 80.04 587 

The training of the model, compared with the proposed MISU-YOLOv8 ground target 
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recognition algorithm and related algorithms, demonstrates the advantages of the MISU-
YOLOv8 presented in this chapter. Table 5 compares YOLO with MISU-YOLOv8 and related 
lightweight algorithm models, where MISU-YOLOv8 shows obvious superiority in several key 
metrics. MISU-YOLOv8 achieves a precision of 80.97%, which is slightly lower than YOLOv7-
tiny (82.03%), but stands out among other models, indicating its high accuracy in predicting 
targets. The recall rate of MISU-YOLOv8 is 80.91%, significantly higher than the highest value 
of other models at 80.17% (YOLOv3-tiny), meaning it can detect more actual targets. MISU-
YOLOv8's mean average precision reaches 88.17%, the highest among all models, 
approximately 7.16 percentage points higher than the second-best YOLOv4-tiny, showcasing 
its stronger overall performance. MISU-YOLOv8 maintains a high frames per second (FPS) rate 
at 587, although slightly lower than YOLOv3-tiny (561 FPS) and YOLOv8 (521 FPS), yet, 
combined with its excellent accuracy and recall rate, indicates its strong real-time processing 
capability in practical applications. 

Table 6: Comparison of the results of different module combinations 

Models Based Models 
MS 

Block 
iRMB SCINet P/% R/% F1/% mAP/% 

FLOPs 

(G) 
FPS 

Model1 YOLOv8    77.43 77.79 75.79 83.76 28.43 534 

Model2 YOLOv8   ✓ 81.64 73.45 78.35 80.37 27.96 873 

Model3 YOLOv8  ✓  77.76 74.31 78.63 81.11 26.79 644 

Model4 YOLOv8 ✓   84.46 83.91 85.15 81.89 14.07 475 

Model5 YOLOv8  ✓ ✓ 81.64 75.19 75.56 81.99 28.16 675 

Model6 YOLOv8 ✓ ✓  80.91 80.57 77.25 85.34 13.43 541 

Model7 YOLOv8 ✓  ✓ 80.47 81.15 82.77 79.69 13.12 525 

Model8 YOLOv8 ✓ ✓ ✓ 80.97 80.91 80.04 88.17 12.98 587 

The MS Block significantly improves precision, recall, and F1 score, while effectively 
reducing computational load (FLOPs). SCINet mainly enhances FPS significantly, with some 
improvement in precision and F1 score. iRMB contributes to improving FPS and certain 
performance metrics (such as F1 score). Overall, Model8, which incorporates all components, 
performs the best, showing significant improvements across all performance metrics. In 
particular, it achieves an average precision of 88.17%, indicating its strong overall performance 
in object detection tasks. 

5 CONCLUSION 

Compared to YOLOv8, MISU-YOLOv8 shows significant improvements. MISU-YOLOv8 
has 127 and 116 bounding boxes at the most densely distributed positions for width and height, 
respectively, achieving a test recognition rate of 91.68% versus YOLOv8's 75.89%. MISU-
YOLOv8 has over 80% prediction accuracy for 20 types of targets, while YOLOv8 achieves this 
for only three types. MISU-YOLOv8 reaches 90% training accuracy after approximately 600 
iterations and converges to 100% after 900 iterations. In comparison, SqueezeNet reaches 98% 
training accuracy only after 1500 iterations, with other models achieving 94%-99%. 

The proposed YOLO v8 model, enhanced with MS block, iRMB, SCINet, and UnfogNet, 
shows significant advancements in ground target recognition for helicopter-mounted vision 
systems, particularly in dark and foggy environments. The integration of multi-scale features 
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and attention mechanisms has been pivotal in improving the accuracy and robustness of target 
detection. 

The proposed model's superior performance in complex environments not only boosts the 
operational capabilities of helicopters but also has broader implications. For instance, in search 
and rescue missions, the ability to accurately detect and recognize targets in low visibility 
conditions can save lives. Similarly, for inspection tasks, enhanced detection capabilities can 
lead to more efficient and thorough assessments, ensuring better maintenance and safety 
standards. 

6 DATA SOURCES 

The article includes some data to support the results of this research. The dataset for this 
article is available at https://drive.google.com/drive/folders/1UdlgHk49iu6WpcJ5467iT-
UqNPpx__CC. 
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