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Abstract: In response to the two core demands in agricultural 
production, namely "precision irrigation" and "sustainable 
transformation", this study conducts two key research tasks: First, it 
predicts the crop irrigation demand based on meteorological data. 
Initially, the 3σ principle is adopted to identify and label outliers—
isolated outliers are filled using linear interpolation, while consecutive 
outliers are filled with average value. Subsequently, two types of 
models are constructed: on the one hand, three evapotranspiration 
formulas (Hargreaves, Priestley-Taylor, and Makkink) are integrated, 
and the evapotranspiration (ET) amount is calculated through 
weighted fusion to establish the ET formula; on the other hand, a Long 
Short-Term Memory (LSTM) model is built via a two-layer architecture. 
These two models are then compared. Second, it carries out research 
on the transformation of organic agriculture based on farm economic 
and environmental data. First, farms are classified into geographical 
types (Plain, hilly, and mountainous). Then, a multi-objective 
optimization model is constructed with the goals of "maximizing 
economic benefits" and "maximizing environmental benefits". 
Combined with constraints on transformation ratio and annual 
transformation, the genetic algorithm is used to solve the model. 
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1 INTRODUCTION 

It can be known by referring to journal [1], in recent years, with the accelerated 
advancement of agricultural modernization, "efficient resource utilization" and "ecological 
environment protection" have become core issues in the sustainable development of agriculture. 
On the one hand, the accurate prediction of crop irrigation demand is crucial for avoiding water 
resource waste and improving irrigation efficiency. However, outliers in meteorological data 
tend to interfere with prediction accuracy, and traditional ET models have limited adaptability 
to complex meteorological conditions. On the other hand, the transformation to organic 
agriculture serves as a vital approach to reducing agricultural carbon emissions and improving 
soil quality. Nevertheless, issues such as "high initial investment" and "uncertain short-term 
returns" during the transformation process have restricted its promotion, making it necessary 
to balance economic and environmental benefits. 

To address the issues, this study focuses on two core research tasks: First, regarding 
irrigation demand forecasting, systematic preprocessing of meteorological data is conducted 
initially, followed by the construction of an ET fusion model and an LSTM model. The 
superiority of the LSTM model is verified through error comparison. Second, for the 
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transformation to organic agriculture, farms are first classified into geographical types and the 
characteristics of data distribution are analyzed; subsequently, a multi-objective optimization 
model is established, and a genetic algorithm is employed to solve the optimal transformation 
strategy. Through the integration of these two research tasks, an integrated solution can be 
provided for the "precision" and "greening" of agricultural production, thereby contributing to 
the sustainable development of agriculture. 

2 RELATED WORK 

Based on the meteorological data collected by the research team, an irrigation demand 
prediction system for crops is constructed. Firstly, the 3σ principle is adopted to identify and 
label outliers in the meteorological data—isolated outliers are filled using the linear 
interpolation method, while consecutive outliers are filled with the average value method to 
ensure data quality. Subsequently, two types of prediction models are developed separately: 
an ET fusion model that integrates three classic evapotranspiration formulas (Hargreaves, 
Priestley-Taylor, and Makkink), and an LSTM model based on a two-layer architecture. The 
applicability of different models in crop irrigation demand prediction is verified through error 
comparison, ultimately providing technical support for precision irrigation decision-making. 

Combined with farm economic and environmental data, research on the transformation to 
organic agriculture is conducted. First, farms are classified into three geographical types (Plain, 
hilly, and mountainous) according to topographic features, and differences in transformation 
costs, profit potential, and environmental carrying capacity among different types of farms are 
analyzed. Then, a multi-objective optimization model with "maximizing economic benefits" 
and "maximizing environmental benefits" as dual objectives is established, incorporating 
constraints on transformation ratio (The total number of transformed farms shall not exceed 
80% of the total number of farms) and annual transformation (The proportion of farms 
transformed each year shall not exceed 25%). The genetic algorithm is used to solve the optimal 
transformation strategy, providing a quantitative scheme for the promotion of organic 
agriculture. 

In terms of data sources, the meteorological data (Average temperature, solar radiation, 
precipitation, etc.), farm economic data (Transformation costs, product premium, government 
subsidies, etc.), and environmental benefit data (Carbon emission reduction, water saving 
volume, soil quality indicators, etc.) required for the study are all obtained through field 
surveys, statistical reports from agricultural departments, and regional agricultural ecological 
databases. This ensures the authenticity and timeliness of the data. 

3 MODEL ESTABLISHMENT AND SOLUTION 

3.1 MODEL ESTABLISHMENT 

3.1.1 ET Formula 

For the ET model (A computational model for crop evapotranspiration), it is known from 
consulting relevant journals [2] and [3] that in practical work, meteorological stations in 
different regions all have missing data for the above-mentioned parameters, which poses 
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certain difficulties for accurate calculation of evapotranspiration. Meanwhile, it is precisely to 
address this problem that the research and development of approximate estimation methods 
have been promoted, such as classic models including Hargreaves, Priestley-Taylor, and 
Makkink. In the following, these three models will be combined to calculate the crop irrigation 
demand. 

First, key parameters are derived based on the weather_data dataset, including average 
temperature (Tm) ,temperature (∆T) , saturated water vapor pressure (es,max  and es,min) and 
slope of saturated water vapor pressure(δ). 

(1)Hargreaves Model： 
The evapotranspiration (ET) calculated by this model is more sensitive to temperature 

fluctuations. By reviewing relevant journals [3] and considering the actual data conditions, the 
formula for calculating crop evapotranspiration based on temperature and solar radiation data 
is as follows： 
 𝐸𝐸𝐸𝐸0,𝐻𝐻 = 0.023 × (𝑇𝑇𝑚𝑚 + 17.8) × �|∆𝑇𝑇| × (𝑅𝑅𝑠𝑠 × 0.408)  (1) 

Where：Rs is solar radiation(MJ/(m²∙d）） 
(2)Priestley-Taylor Model： 
The evapotranspiration (ET) calculated by this model is more consistent with the law of 

energy balance, but it exhibits lower sensitivity to extreme temperatures. As indicated in the 
literature [4] and [5], the formula for calculating crop evapotranspiration with consideration of 
energy balance is as follows： 

 𝐸𝐸𝐸𝐸0,𝑃𝑃𝑃𝑃 = 𝛼𝛼 × � 𝛿𝛿
𝛿𝛿+𝛾𝛾

� × �𝑅𝑅𝑠𝑠
𝜆𝜆 𝑣𝑣
�  (2) 

Where：𝛾𝛾 is the psychrometric constant, and λ v is the latent heat of vaporization. 
（3）Makkink Model： 
The reference crop evapotranspiration (ET₀) calculated by this model can maintain high 

accuracy even in more simplified calculation processes. As indicated in Journal [6], the formula 
for calculating the reference crop evapotranspiration (ET₀) is as follows： 

 𝐸𝐸𝐸𝐸0,𝑀𝑀 = 0.61 × � 𝛿𝛿
𝛿𝛿+𝛾𝛾

� × �𝑅𝑅𝑠𝑠
𝜆𝜆 𝑣𝑣
� − 0.12  (3) 

After calculating the reference crop evapotranspiration (𝐸𝐸𝐸𝐸0 )using the three models, 
reasonable weight allocation is conducted. Subsequently, a weighted fusion strategy is adopted 
to synthesize the integrated reference crop evapotranspiration (ET₀), and its expression is as 
follows： 
 𝐸𝐸𝐸𝐸0,,𝑒𝑒𝑒𝑒𝑒𝑒 = 0.4 × 𝐸𝐸𝐸𝐸0,𝐻𝐻 + 0.4 × 𝐸𝐸𝐸𝐸0,𝑃𝑃𝑃𝑃 + 0.2 × 𝐸𝐸𝐸𝐸0,𝑀𝑀  (4) 

Finally, based on the aforementioned reference crop evapotranspiration (ET₀), the target 
variable is defined for the irrigation requirement (IR) to be predicted, and its expression is as 
follows： 
 𝐼𝐼𝐼𝐼 = 𝑚𝑚𝑚𝑚𝑚𝑚 (0,𝐸𝐸𝐸𝐸0,,𝑒𝑒𝑒𝑒𝑒𝑒 × 𝑘𝑘𝑐𝑐 − 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒)  (5) 

Where:Peff denotes the effective precipitation, and kc denotes the crop coefficient. 

3.1.2 LSTM Model 

Compared with the ET formulas, the LSTM model possesses a certain ability to capture 
complex nonlinear relationships and temporal dynamic characteristics, as indicated in the 
literature [7]. 
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In the construction of the LSTM model, feature input and sequence construction are first 
performed. Subsequently, the dataset is divided into an 80% training set, a 10% validation set, 
and a 10% test set using the stratified sampling method. After that, the RobustScaler 
transformation method is adopted to standardize the input feature sets and target variables in 
the model, which facilitates subsequent model training and calculation. 

Upon completion of the above work, to realize end-to-end prediction of irrigation 
requirements, the construction of a two-layer LSTM architecture is initiated for model training. 
The construction process of the LSTM model is illustrated in Figure 1: 

 

Fig. 1: Flowchart of LSTM Model Construction. 

3.1.3 Multi-Objective Optimization Model 

The decision-making for the transformation to organic farming in this study is a typical 
NP-hard problem, as it involves both economic benefit and environmental benefit objectives. 
Therefore, a multi-objective genetic algorithm optimization model is adopted to solve this 
problem 

First, the decision variable xi = (1,2,⋯ , n)，with n representing the total number of farms. 
In accordance with the requirements of this problem, the following two objective functions 

are constructed based on practical conditions: 
(1) Economic Benefit Objective Function 

 𝑚𝑚𝑚𝑚𝑚𝑚  𝑓𝑓1(𝑥𝑥) = 1
𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑥𝑥𝑖𝑖 ∙ [𝐺𝐺 − 𝐿𝐿 − 𝐾𝐾 + 𝐵𝐵]𝑛𝑛
𝑖𝑖=1   (6) 

Where: G represents the price premium benefit, L represents the transformation 
cost, B represents the constant of government subsidies, and Emax (the normalization constant 
for economic benefits) is equal to 30% of the total profit. 

(2) Environmental Benefit Objective Function 

 𝑚𝑚𝑚𝑚𝑚𝑚  𝑓𝑓2(𝑥𝑥) = 1
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

∑ 𝑥𝑥𝑖𝑖 ∙ [𝐶𝐶𝑟𝑟 + 𝑊𝑊𝑠𝑠 × 𝛿𝛿]𝑛𝑛
𝑖𝑖=1   (7) 

Where:Crrepresents the carbon emission reduction,Wsepresents the water saving volume, 
and Vmax the normalization constant for environmental benefits) is equal to 40% of the total 
carbon footprint. 

Finally, to ensure the rationality of the output results, transformation proportion 
constraints and annual transformation constraints are established as follows: 

①Transformation proportion constraint：∑ xin
i=1 ≤ 0.8n.The total number of transformed 

farms shall not exceed 80% of the total number of farms. 
② Annual transformation constraint：∑ xi 

i∈Yk ≤ 0.25n，∀k = 1,2, … ,5. The proportion of 
farms transformed each year shall not exceed 25%. 
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Where: Yk denotes the set of farms planned to be transformed in the k-th year. 

3.2 Model Solution 

3.2.1 Irrigation Demand Prediction 

Based on the LSTM model established above, the variation of the model’s training loss and 
validation loss with the number of iterations during the training process can be obtained. Its 
visualization is shown in Figure 2: 

 

Fig. 2: Variation of Loss During the Training Process of the LSTM Model. 

As can be observed from the figure, in the early stage of model training, both metrics 
decrease rapidly, which reflects the model's fast learning ability. With the progress of model 
training, the training loss shows a continuous downward trend, while the validation loss, 
despite some fluctuations, gradually stabilizes overall—indicating that the model has basically 
converged. 

Based on the predictions of the ET model and LSTM model, the final prediction 
comparison chart can be visualized, as shown in Figure 3: 

 

Fig. 3: Prediction Comparison Chart. 

In this figure, the blue line represents the actual irrigation demand (With peaks indicating 
the corresponding crop water requirement periods), the orange line represents the predicted 
values of the traditional LH model, and the green line represents the predicted values of the 
LSTM model. Based on the above analysis and in combination with the journal [8], it can be 
observed that the predicted values of the traditional LH model fluctuate significantly, 
indicating that this method tends to cause overprediction; in contrast, the predicted values of 
the LSTM model are closer to the actual irrigation demand, demonstrating that the LSTM 
model has a better fitting effect. 
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The corresponding error metrics calculated based on the above models yield the results 
shown in Table 1: 

Table. 1: Model Error Metrics. 

Type RMSE MAE 

LH 0.698 0.271 

LSTM 0.413 0.192 

 
It can be seen from these results that the LSTM model has lower errors and a better fitting 

effect. 
To summarize, in the irrigation demand prediction, when comparing the LSTM model 

with the LH model, the former exhibits superior fitting performance, with a more stable 
convergence during the training process and smaller errors. Therefore, the LSTM model 
achieves better performance in the task of predicting irrigation demand. 

3.2.2 Impact of Organic Agriculture Transition 

Based on the multi-objective optimization model constructed above, the genetic algorithm 
(GA) is adopted to solve the problem. It is known from consulting relevant journal [9], the steps 
include population initialization and genetic operations such as selection, crossover, and 
mutation, with the specific algorithm flow chart shown in Figure 4： 

 

Fig. 4: Flowchart of the Genetic Algorithm. 

After solving the model using the aforementioned method, the visualization of the 
comparative evaluation of comprehensive benefits before and after the organic agriculture 
transition can be conducted, as shown in Figure 5：  
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Fig. 5: Comparative Evaluation of Comprehensive Benefits. 

From the left graph (Before the organic agriculture transition), it can be observed that 
although its yield efficiency is relatively prominent, its environmental friendliness is poor, and 
on the contrary, its economic benefits do not show a significant performance. From the right 
graph (After the organic agriculture transition), it can be seen that except for the relatively weak 
yield efficiency, other indicators have improved significantly, with soil quality showing the 
most notable improvement. Overall, organic agriculture after the transition is a healthier and 
more excellent agricultural development model. 

After analyzing the overall situation, combining the content of the journal [10], the 
following will separately analyze the evaluation results of the impact of organic agriculture 
transition on two aspects: economic benefits and carbon emissions. 

3.2.2.1 Evaluation of the Impact on Economic Benefits 

From the output results, it can be intuitively observed that when the number of farms 
transitioning to organic agriculture reaches 377, an initial investment of approximately 105.4 
million yuan is required, with an expected annual revenue growth of about 25.47 million yuan 
and an investment payback period of 3 to 4 years. 

For a more in-depth analysis, the visualization of the investment payback period analysis 
is provided in Figure 6： 
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Fig. 6: Schematic Diagram of Investment Payback Period Analysis. 

As can be seen from the figure, the 3.2-year mark of the investment corresponds to the 
break-even point. This indicates that while the initial investment required for the organic 
agriculture transition is relatively large, the economic benefits it brings are quite significant in 
the long run. 

3.2.2.2 Carbon Emission Impact Assessment 

From the output results, it can be intuitively observed that after transitioning to organic 
agriculture, the annual carbon emission reduction amounts to 3,966 kg CO₂, while soil quality 
is projected to improve by 25% within three years. The visualization of the comprehensive 
environmental quality score and soil health recovery curve is presented in Fig. 7 as follows: 

 

Fig. 7: Schematic Diagram of Carbon Emission Impacts Before and After Organic Agriculture 
Transition. 

As can be observed from the figures, after the transition to organic agriculture, all 
indicators of environmental quality have shown significant improvement. The soil health 
recovery curve is gradually approaching the target level, with the degree of soil health 
continuously improving. 

Therefore, the impacts brought about by the transition to organic agriculture involve 
optimization and enhancement across multiple dimensions. Based on the above analysis and 
in combination with the literatures [11] and [12], except for the slightly weaker yield efficiency, 

http://www.istaer.online/
https://doi.org/10.71451/ISTAER2548


International Scientific Technical and Economic Research | ISSN: 2959-1309 | Vol.3, No.4, 2025 
www.istaer.online——Research Article 

9 
Wang et.al., ISTAER. 2548 (2025)., 03 Oct 2025                   https://doi.org/10.71451/ISTAER2548 

other aspects—including economic benefits, environmental friendliness, resource utilization, 
and soil quality—have all achieved significant improvement after the transition to organic 
agriculture, making it a healthier and more excellent agricultural development model. 

To achieve the ecological goal of harmonious coexistence between agriculture and the 
natural ecosystem, targeted planning for agricultural transition can be carried out based on the 
visualization of "Farm Geographic Distribution and Transition Strategies," as specifically 
shown in Figure 8: 

 

Fig. 8: Schematic Diagram of Farm Geographic Distribution and Transition Strategies. 

As can be seen from the figure, traditional farms dominate in all regions, while the number 
of organic farms is generally small. Among the recommended transition ratios across regions, 
mountainous areas account for 48.5%; planning for organic agriculture transition can be carried 
out based on the priority of these transition ratios. 

4 CONCLUSIONS 

Based on this study on irrigation demand prediction and organic agriculture transition, 
the following conclusions are drawn: 

By constructing the above models and conducting a comparison, it is found that the LSTM 
model has a better fitting effect, with RMSE = 0.413 and MAE = 0.192— errors that are 
significantly lower than those of the ET model. The results after agricultural transition show 
that the initial investment for organic agriculture transition is approximately 105.4 million yuan, 
with an investment payback period of 3 to 4 years; in the long term, the annual revenue growth 
is about 25.47 million yuan, the annual carbon emission reduction reaches 3,966 kg CO₂, and 
soil quality is expected to improve by 25% within 3 years. 
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