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Abstract: Early diagnosis and accurate localization of brain tumors are crucial 
for improving patient survival rates. Among these, automated detection 
methods based on deep learning have become a research hotspot. However, 
tumor detection, especially for complex shapes and small targets, remains 
challenging. To address this, this study proposes an improved YOLO model—
YOLO-CDF—aimed at enhancing the detection accuracy for complex and 
small targets in brain tumor MRI images. The model builds upon YOLO by 
incorporating the BRASPPF module (A combination of bi-level routing 
attention mechanism and spatial pyramid pooling), dilated convolution, and 
small object detection layers. Experimental results show that the YOLOv8-CDF 
model achieves a good balance between precision and recall, with an overall 
mAP@0.5 of 0.929 and an F1 score reaching 0.90, demonstrating excellent 
detection performance. When detecting tumors, the model's precision values 
are 0.974, 0.964, and 0.851, respectively. Validation results show that the model 
can provide accurate predictions at both high and low confidence levels, with 
strong detection capabilities and good generalization ability, making a 
significant contribution to the identification of brain tumors. 
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1 INTRODUCTION 

Brain tumours represent one of the significant diseases impacting global public health, 
where early diagnosis and accurate tumour localisation are crucial for improving patient 
survival rates. Traditional brain tumour detection methods rely on manual analysis by medical 
imaging specialists, a process that is both time-consuming and susceptible to human error. In 
recent years, with the rapid advancement of deep learning technologies, automated brain 
tumour detection systems based on computer vision have gradually emerged as a research 
focus. These approaches utilise convolutional neural networks to analyse features within 
medical images, enabling rapid and precise tumour detection and classification. 

2 RELATED WORK AND HYPOTHESES 

In this study, our work primarily encompasses the following aspects: we selected a brain 
tumour MRI dataset from Roboflow Universe and enriched the training data through data 
augmentation techniques. This ensured the model could adapt to diverse image variations, 
thereby enhancing its detection capabilities in complex scenarios. Subsequently, we designed 
a YOLO-CDF model, which represents an enhancement upon the YOLO framework. By 
incorporating the BRASPPF module (Combining a dual-layer routing attention mechanism 
with a spatial pyramid pooling structure), contextual information fusion during feature 
extraction was enhanced, thereby improving the model's detection accuracy for complex 
tumour morphologies. Simultaneously, dilated convolutions replaced conventional 
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convolutional layers to enhance the model's perceptual capabilities across different scales. A 
small object detection layer was introduced to improve performance when processing small 
lesions, thereby increasing accuracy in locating and identifying minute targets and bolstering 
the model's clinical efficacy. Finally, comparative experiments against conventional YOLO 
models (YOLOv5, YOLOv8s, and YOLOv9) validated the YOLO-CDF model's performance 
metrics, including accuracy, recall, and mAP. 

3 DATASET PROCESSING 

3.1 Dataset Introduction 

The brain tumour MRI dataset utilised in this experiment was provided by Roboflow 
Universe, comprising 3,903 annotated MRI images categorised into three types: gliomas, 
meningiomas, and pituitary tumours. Each image in the dataset features bounding box 
annotations for precise tumour localisation, supporting object detection and classification tasks. 
The data is partitioned into a training set (70%), validation set (20%), and test set (10%), 
compatible with mainstream formats such as YOLO, making it suitable for real-time, efficient 
detection tasks [1]. 

 

Fig. 1: Original Dataset. 

Table. 1: Dataset Attribute Statistics. 

Tumour type Train Test Vald All 

glioma 1272 363 181 1816 

meningioma 634 182 91 907 

pituitary 826 236 118 1180 

All 2732 781 390 3903 

Table. 2: File Type Information. 

Folder name Data type 

Images PNG format 

Labels Txt message 

 

http://www.istaer.online/
https://doi.org/10.71451/ISTAER2551


International Scientific Technical and Economic Research | ISSN: 2959-1309 | Vol.3, No.4, 2025 
www.istaer.online——Research Article 

36 
Gao et al., ISTAER. 2551 (2025)., 11 Oct 2025                     https://doi.org/10.71451/ISTAER2551 

3.2 Image processing 

Insufficient dataset size may lead to overfitting or underfitting, thereby compromising 
deep learning performance. Consequently, this paper generates three augmented outputs for 
each training sample to enrich the training dataset and enhance the deep learning model's 
adaptability to image variations [2]. (1) Rotation: Images will undergo random rotation 
between -15° and +15°, simulating real-world variations caused by differing capture angles to 
enhance the model's robustness against image orientation shifts [3]. (2) Grayscaling: 100% of 
images will be converted to grayscale, enabling the model to focus on learning structural and 
textural information, thereby reducing sensitivity to lighting and colour variations. (3) 
Brightness Adjustment: Image brightness will be adjusted between 0% and +29% to simulate 
capture effects under varying lighting conditions, thereby strengthening the model's 
adaptability to changes in light intensity [4]. (4) Bounding Box Brightness Adjustment: The 
brightness within bounding boxes in images will be adjusted between 0% and 16%, aiming to 
improve the model's ability to recognise object boundaries under differing brightness 
conditions. 

 

Fig. 2: Processed Data Image. 

4 MODEL ESTABLISHMENT AND SOLUTION 

4.1 model establishment 

YOLO (You Only Look Once) is an object detection algorithm based on deep convolutional 
neural networks. It utilises convolutional neural networks to extract image features and 
employs multi-scale feature maps for comparative analysis, thereby achieving effective target 
detection. Due to issues such as varying morphological structures and sizes in MRI tumour 
data, this paper proposes an enhanced algorithm: YOLO-CDF (YOLO-based Compact Feature 
Detection). This algorithm builds upon the original YOLO model with optimisations and 
refinements aimed at improving detection accuracy and efficiency, particularly for complex 
object detection and localisation. The following outlines the design rationale and key structural 
optimisations of this model: 
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(1) Size Input Reduction 
The image size is reset, and compared to higher resolution inputs, the original image size 

is 𝐻𝐻 × 𝑊𝑊 × 𝐶𝐶in , where 𝑊𝑊out  and 𝐻𝐻out  represent the width and height of the original image, 
respectively. 𝐶𝐶out  is the number of channels in the image [5]. 

In this paper, the computational cost (FLOPs) of the convolution operation is proportional 
to the image size: 

FLOPs ∝ 𝑊𝑊out = 640 × 𝐻𝐻out = 480 × 𝐶𝐶out = 3               (1) 
The input image size is reset to 𝑊𝑊out = 640,  𝐻𝐻out = 480 , and the number of channels 

𝐶𝐶out = 3 . This makes the model more efficient during inference while ensuring sufficient 
detection accuracy. 
(2) Design of the BRASPPF Module 

The YOLO convolutional network expands relevant features through the SPPF module. 
SPPF is an improved spatial pyramid pooling structure based on the spatial pyramid pooling 
(SPP) architecture, which integrates global and local information. However, there is some loss 
of feature information. Therefore, this paper integrates a bi-level routing attention (BRA) 
mechanism, resulting in a new module, BRASPPF [6]. 

The input feature map of size 𝐻𝐻 × 𝐿𝐿 can be divided into 𝑆𝑆 × 𝑆𝑆 non-overlapping regions 
and then linearly mapped to obtain the key tensor 𝐾𝐾, query tensor 𝑄𝑄, and value tensor 𝑉𝑉: 

𝐾𝐾 = 𝑋𝑋𝑟𝑟𝑊𝑊𝑘𝑘 ,𝑄𝑄 = 𝑋𝑋𝑟𝑟𝑊𝑊𝑞𝑞 ,𝑉𝑉 = 𝑋𝑋𝑟𝑟𝑊𝑊𝑣𝑣                                                   (2) 
Where 𝑋𝑋𝑟𝑟  is the reconstructed feature map, and 𝑊𝑊𝑘𝑘 ,𝑊𝑊𝑞𝑞 ,𝑊𝑊𝑣𝑣   are the weights 

corresponding to the key, query, and value tensors in the network. 
Next, attention weights are calculated on the coarse-grained tokens, and only the top 𝑘𝑘 

largest elements are selected to represent the corresponding regions for fine-grained 
computation. The indices of these elements are returned to the matrix 𝐼𝐼𝑟𝑟: 

𝐴𝐴𝑟𝑟 = 𝑄𝑄𝑟𝑟(𝐾𝐾𝑟𝑟)𝑇𝑇 , 𝐼𝐼𝑟𝑟 = topkIndex(𝐴𝐴𝑟𝑟)                                                 (3) 
Finally, the Top-k coarse-grained regions in 𝐼𝐼𝑟𝑟 are collected through the gather algorithm. 

These are used as keys and values in the final computation, and the matrix 𝑂𝑂 is output. To 
enhance contextual information, a depthwise convolution is applied to the values. 

𝐾𝐾𝑔𝑔 = gather(𝐾𝐾, 𝐼𝐼𝑟𝑟)                                                                         (4) 
𝑉𝑉𝑔𝑔 = gather(𝑉𝑉, 𝐼𝐼𝑟𝑟)                                                                          (5) 

𝑂𝑂 = Attention(𝑄𝑄,𝐾𝐾𝑔𝑔,𝑉𝑉𝑔𝑔) + LCE(𝑉𝑉)                                                        (6) 
Where 𝐾𝐾𝑔𝑔 and 𝑉𝑉𝑔𝑔 are the aggregated key and value tensors. 

 

Fig. 3: BRASPPF and BRA Module Structure. 

(3) Hollow Convolution Module 

（a）BRASPPF module （b）BRA module
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In standard convolution, each input channel is convolved with all the convolution kernels of 
the output channels 𝐶𝐶out  , generating the corresponding feature map. The input tensor 𝑋𝑋 ∈
R𝐻𝐻×𝑊𝑊×𝐶𝐶in , where 𝐻𝐻 and 𝑊𝑊 are the height and width of the input image, respectively, and 𝐶𝐶in  is 
the number of input channels. The kernel size is 𝑘𝑘ℎ × 𝑘𝑘𝑤𝑤, and the output tensor has dimensions 
𝑌𝑌 ∈ R𝐻𝐻out ×𝑊𝑊out ×𝐶𝐶out , where 𝐻𝐻out  and 𝑊𝑊out  are the height and width of the output feature map, and 
𝐶𝐶out  is the number of output channels [7]. 

The Spatial Depthwise Convolution Block performs convolution operations individually on 
each input channel. It then combines the convolution results along the depth dimension to generate 
the output feature map. Each input channel 𝑐𝑐in  is convolved with its own independent kernel [9]. 
For each output pixel 𝑦𝑦(ℎ,𝑤𝑤,𝑐𝑐in), the calculation formula is: 

𝑦𝑦(ℎ,𝑤𝑤,𝑐𝑐in) = �  
𝑘𝑘ℎ−1

𝑖𝑖=0

�  
𝑘𝑘𝑤𝑤−1

𝑗𝑗=0

𝑥𝑥(ℎ+𝑖𝑖,𝑤𝑤+𝑗𝑗,𝑐𝑐in) ⋅ 𝑘𝑘(𝑖𝑖,𝑗𝑗,𝑐𝑐in)                                         (7) 

Where 𝑥𝑥(ℎ+𝑖𝑖,𝑤𝑤+𝑗𝑗,𝑐𝑐in )  is the pixel value in the 𝑐𝑐in − th  channel of the input tensor, and 
𝑘𝑘(𝑖𝑖,𝑗𝑗,𝑐𝑐in ) is the value at position (𝑖𝑖, 𝑗𝑗) in the convolution kernel 𝐾𝐾(𝑐𝑐in). 

 

Fig. 4: SPDConv Module Structure. 

(4) Small Object Detection Layer Design 

The small object detection layer is designed to enhance the model's performance when 
processing small objects. In MRI images, numerous critical tumour lesions often manifest as 
minute targets within complex backgrounds. Consequently, the introduction of this layer 
enables the reinforcement of internal image details, thereby assisting the model in accurately 
localising and identifying small-scale lesions to support more precise medical diagnosis [8]. 

Its overall framework structure is as follows: 
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Fig. 5: YOLO-CDF Network Model Architecture. 

4.2 model solution 

This paper conducts comparative experiments between traditional YOLO models 
(YOLOv5, YOLOv8s, YOLOv9, YOLO10, YOLO11) and the designed YOLOv8s-CDF model. 
The results are as follows [11], [12]: 

Table. 3: Comparative Evaluation of Multi-Model Performance. 

Model mAP50 mAP50-95 Precision 

YOLOv5 0.92151 0.71058 0.90403 

YOLOv8 0.92425 0.72112 0.90221 

YOLOv11 0.92347 0.60071 0.91603 

YOLOv9 0.9222 0.70664 0.91491 

YOLOv10 0.90593 0.6825 0.89035 

YOLOv8_CDF 0.92932 0.71775 0.89915 

Table. 4: Continued. 

Model Recall Train_Loss Val_Loss 

YOLOv5 0.87765 0.66518 0.95083 

YOLOv8 0.86595 0.62414 0.94234 

YOLOv11 0.877 0.89455 1.37169 

YOLOv9 0.8771 0.62963 0.97373 

YOLOv10 0.84204 1.34783 2.00352 

YOLOv8_CDF 0.89767 0.67916 0.9408 

 

Fig. 6: Multi-model Visualisation Comparison. 

Based on the performance metrics analysis of each model, YOLOv11 demonstrated the best 
accuracy (0.91603) and recall (0.89455), making it suitable for tasks requiring high detection 
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precision; YOLOv5 achieved the lowest training loss (0.66518) with stable overall performance, 
demonstrating high training efficiency; YOLOv8_CDF excelled in validation loss (0.9408) and 
mAP50 (0.92932), exhibiting strong generalisation capabilities; YOLOv10, however, 
demonstrated weaker performance, particularly in terms of precision (0.89035), recall (0.84204), 
and loss metrics (Training loss 1.34783, validation loss 2.00352). Overall, the YOLOv8_CDF 
model designed in this paper achieved the best comprehensive performance and is therefore 
identified as the optimal model. 

The training process is as follows: 

 

Fig. 7: Training Process. 

The training process of the YOLOv8_CDF model demonstrated favourable convergence 
and performance enhancement.Regarding training loss metrics, train/box_loss, train/cls_loss, 
and train/dfl_loss progressively converged and optimised. For validation loss, the loss on the 
validation set similarly decreased, indicating improved generalisation capability. This 
validated the model's significant advancement in detection accuracy. YOLOv8_CDF 
demonstrated robust performance throughout both training and validation, exhibiting 
favourable convergence and strong generalisation capabilities. 
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Fig. 8: Performance Convergence Curve. 

The model performs excellently in brain tumor (Glioma, meningioma, pituitary) detection 
tasks. The overall mAP@0.5 reaches 0.929, indicating a good balance between precision and 
recall. As confidence increases, the precision approaches 1, and the model's performance 
remains stable, providing high-accuracy predictions at high confidence while maintaining a 
high recall rate at lower confidence, demonstrating strong detection capabilities and 
generalization ability. 

 

Fig. 9: Test Classification Results. 

5 CONCLUSION 

The experiment uses the Brain Tumor MRI dataset from Roboflow Universe, consisting of 
3,903 annotated images categorized into glioma, meningioma, and pituitary tumors. The 
dataset is split into training (70%), validation (20%), and test (10%) sets. Data augmentation 
techniques (Rotation, grayscaling, brightness adjustment, and bounding box brightness 
adjustment) were applied to improve model adaptability and prevent overfitting. The 
proposed improved YOLO model—YOLO-CDF—combines the BRASPPF module, dilated 
convolution, and small object detection layers to enhance the detection accuracy of complex 
targets. Experimental results show that YOLOv8_CDF achieves a good balance between 
precision and recall, with an overall mAP@0.5 of 0.929. It performs excellently in detecting 
meningiomas and pituitary tumors, with precision values of 0.974 and 0.964, respectively, 
though glioma detection remains more challenging, with a precision of 0.851. Overall, 
YOLOv8_CDF demonstrates strong detection capabilities and excellent generalization ability. 
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