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Abstract: This study addresses the optimal timing of noninvasive 
prenatal testing (NIPT) testing. A multi-objective optimization model 
centered on minimizing testing error and maternal and fetal risk was 
established and solved using the NSGA-II algorithm. Results 
demonstrated that the model effectively reflects the optimal gestational 
age distribution across populations with varying BMIs (BMIs). The 
optimal timing for NIPT testing was 18.63 weeks for those with a BMI 
≥ 38.3, 23.74 weeks for those with a BMI 28.6–34.5, and 24.72 weeks 
for those with a BMI 20.0-28.6. With increasing iterations, the 
uniformity and diversity of the Pareto front significantly improved, 
and the HV index continued to rise. Monte Carlo perturbation and 
sensitivity analyses validated the model's stability and robustness, 
with BMI having the greatest impact on the results. Overall, the NSGA-
II-based model effectively addresses the optimal timing of NIPT testing, 
providing accurate and reliable results and providing an effective 
quantitative basis for stratified and personalized testing. 
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1 INTRODUCTION 

Non-invasive prenatal testing (NIPT) is widely used due to its safety and accuracy. 
However, the timing of testing is significantly affected by the week of pregnancy, the 
proportion of maternal cfDNA, and individual differences. Improper selection will result in 
repeated sampling or uncertain results. At the national level, birth defect prevention and 
control and maternal and child health improvement have been incorporated into long-term 
planning. Local governments have successively improved the technical specifications and 
quality control requirements for prenatal screening and diagnostic services and encouraged the 
implementation of standardized NIPT services under the premise of ensuring safety and 
accessibility [1]. In this context, this paper takes the fetal Y chromosome concentration that 
meets the standard as the core representation, integrates factors such as BMI, age, height, 
weight, and test error, and establishes a dual-objective model of "test error-pregnancy risk". 
Through constraints such as feasible gestational age, standard probability, error threshold, and 
risk upper limit, the solution is made to meet clinical feasibility [2]. In order to balance 
accursampling andlity, the non-dominated sorting, elite retention and crowding distance 
strategies of NSGA-II were used to search the Pareto frontier, and the uniformity, diversity and 
frontier quality of the solution were evaluated with indicators such as Spacing, Spread and HV, 
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in order to provide the individualized optimal time point for different BMI stratifications, 
improve the success rate of one-time sampling, and reduce unnecessary clinical and 
psychological burdens [3]. 

2 RESEARCH FRAMEWORK AND BASIC ASSUMPTIONS 

This paper constructs a systematic research framework around the problem of determining 
the optimal time point for NIPT, which mainly includes the following three parts: First, a dual-
objective optimization model with "Minimizing detection error" and "Minimizing pregnancy 
and childbirth risks" as the core is established. The model comprehensively considers detection 
accuracy and clinical risk in the objective function, and sets multiple constraints such as the 
feasible domain of gestational age (10-16 weeks), the probability of Y chromosome 
concentration reaching the standard (≥80%), and the detection error threshold (≤0.5%) to 
ensure that the model output results meet the requirements of clinical practice [4]. Second, the 
non-dominated sorting genetic algorithm with elite retention strategy (NSGA-II) is used to 
solve the model. The algorithm stratifies the solution set through non-dominated sorting and 
combines crowding distance calculation to maintain population diversity, thereby gradually 
approaching and constructing a uniformly distributed Pareto optimal frontier during the 
iteration process. Finally, the quality of the Pareto solution set is quantitatively evaluated by 
multi-objective performance indicators such as Spacing, Spread, and Hypervolume (HV). To 
further validate the robustness of the model, this study introduced a Monte Carlo random 
perturbation method to simulate the impact of testing errors and conducted sensitivity analyses 
on key parameters such as BMI and age. Ultimately, based on this, recommendations for 
personalized NIPT testing timing were proposed for different BMI strata. 

To ensure the rationality and feasibility of the model construction and solution process, 
this study proposed the following basic assumptions: 

Hypothesis 1: The relationship between fetal Y chromosome concentration and gestational 
age can be characterized by a parameterized function, whose random error term follows a 
Gaussian distribution with mean zero. 

Hypothesis 2: A fetal Y chromosome concentration threshold of 4% can effectively identify 
test compliance, and this threshold has clinically recognized reliability. 

Hypothesis 3: Individual maternal characteristics (Such as BMI and age) have a significant 
impact on the time it takes for Y chromosome concentration to reach the standard, and this 
impact can be expressed in the model using linear or nonlinear coefficients. 

Hypothesis 4: The NSGA-II algorithm can converge stably under the multi-objective and 
multi-constraint conditions set in this paper. The quality of its output Pareto frontier improves 
with increasing iterations, as evidenced by a continuous increase in the HV index.  

Hypothesis 5: By setting reasonable constraints such as the gestational age range, the lower 
limit of the probability of reaching the concentration standard, and the upper limit of the error, 
the feasibility and applicability of the model output results in clinical practice can be effectively 
guaranteed. 

3 MODEL ESTABLISHMENT AND SOLUTION 

3.1 Construction of multi-objective optimization model 

This problem considers the impact of multiple factors on achieving acceptable 
concentrations and minimizes potential risks to pregnant women. This model involves 
multiple decision variables, such as height, weight, and age, and sets two primary objectives to 
provide an optimal solution while accounting for detection errors. 
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To explore the factors that affect the time when the Y chromosome concentration of male 
fetuses reaches the standard, this paper sets the relationship between the fetal Y chromosome 
concentration and variables such as maternal BMI and gestational age. The model can be 
expressed as: 

 𝑌𝑌 = 𝑓𝑓(BMI,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃Week, 𝜖𝜖)  (1) 

Where 𝑌𝑌 is the fetal Y chromosome concentration, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃Week is the gestational age, 
and 𝜖𝜖  is the error term, which conforms to a Gaussian distribution 𝒩𝒩(0,𝜎𝜎2)  [5]. By 
optimizing this relationship to determine the optimal NIPT timing, the goal is to minimize the 
potential error and risk of NIPT timing within different maternal BMI ranges [6]. 

The potential risk function is defined as:  

 𝑅𝑅 = ∑  𝑛𝑛
𝑖𝑖=1 𝑤𝑤𝑖𝑖 ⋅ �𝑡𝑡optimal,𝑖𝑖 − 𝑡𝑡actual,𝑖𝑖�

2  (2) 

Where 𝑅𝑅 is the total risk, 𝑤𝑤𝑖𝑖  is the weight of the pregnant woman in group 𝑖𝑖, 𝑡𝑡optimal,𝑖𝑖 is 
the ideal optimal NIPT time, and 𝑡𝑡actual,𝑖𝑖 is the actual test time in the simulation. The goal of 
optimization is to minimize this risk function. 
3.1.1 Decision variables 

In this model, the decision variables mainly include: 
Pregnant women’s BMI grouping variable: reasonably grouping pregnant women’s BMI 

values and discretizing them according to the BMI interval. 
NIPT detection time: setting the optimal detection time, in units of gestational weeks, that 

is, each BMI group corresponds to one or more optimal detection time points [7]. 
Y chromosome concentration reaching the standard ratio: that is, whether the Y 

chromosome concentration of male fetuses in each BMI group reaches or exceeds 4%. This ratio 
can be regarded as a control variable, affecting the final detection time point selection [8]. 

The coefficients of influencing factors such as age, height, and weight: these factors will 
affect the time when the Y chromosome concentration reaches the standard and needs to be 
considered through parameterization in the model. 

3.1.2 Objective function 

The two objective functions in this multi-objective optimization model are: 
Minimize detection error: This aims to minimize the model's prediction error, allowing a 

given NIPT time point to accurately predict the time when male fetal Y chromosome 
concentration reaches the target. 

 Objective Function1 = ∑  𝑛𝑛
𝑖𝑖=1 𝑤𝑤1 ⋅ �𝐶̂𝐶𝑖𝑖 − 𝐶𝐶𝑖𝑖�

2  (3) 

Where Ĉi is the predicted time point when the Y chromosome concentration reaches 4%; 
Ci is the actual time point when the standard is reached; w1 is the error weight; and 𝑛𝑛 is the 
sample size. 

Minimize potential risks to pregnant women: Aims to minimize potential risks to pregnant 
women and fetuses and select a reasonable NIPT timing to reduce these risks.  

 Objective Function2 = ∑  𝑛𝑛
𝑖𝑖=1 𝑤𝑤2 ⋅ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖   (4) 

Where Riski is the potential risk of the 𝑖𝑖-th pregnant woman; w2 is the risk weight. The 
potential risk can be calculated based on BMI, age, weight, and genetic factors [9]. 
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3.1.3 Constraints 

In the optimization model, multiple constraints need to be set to ensure the feasibility and 
rationality of the model. Common constraints include: 

（1）BMI grouping constraints 
Each pregnant woman's BMI should be assigned to a reasonable group, such as: 

 𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 ∈ [20,25), [25,30), [30,35), [35,40)  (5) 

This constraint ensures that the BMI grouping conforms to the actual clinical distribution 
and avoids extreme values. 

（2）Feasibility constraint of NIPT timing 
The NIPT testing time should be within the effective gestational age range, that is:  

 10 ≤ PregnancyWeek𝑖𝑖 ≤ 16  (6) 

This constraint ensures the practical feasibility of the detection time point and avoids 
selecting a time point that does not meet clinical standards. 

（3）Probabilistic constraint on Y chromosome concentration reaching the target 
The probability of each pregnant woman's Y chromosome concentration meeting the 

standard should meet certain minimum requirements, such as: 

 𝑃𝑃�𝐶̂𝐶𝑖𝑖 ≥ 4%� ≥ 0.80  (7) 

This constraint ensures that the test can effectively identify male fetuses with a Y 
chromosome concentration of 4% z at the predetermined time point. 

（4）Detection error constraints 
The measurement error should be kept within a preset range to ensure that the time point 

output by the model does not deviate too much from the actual time point. This can be 
expressed by setting an error threshold: 

 �𝐶̂𝐶𝑖𝑖 − 𝐶𝐶𝑖𝑖� ≤ 𝜖𝜖  (8) 

Here, 𝜖𝜖 is the error threshold, which is usually set to 0.5%. 
（5）Risk minimization constraints 
The risk level for pregnant women needs to be within a clinically acceptable range. An 

upper limit for risk can be set: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 ≤ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  (9) 

This constraint ensures that the potential risk to pregnant women remains within 
acceptable limits.  

By constructing the above decision variables, objective functions, and constraints, we can 
solve the multi-objective optimization model, thereby providing the best NIPT testing time for 
pregnant women in different BMI groups, ensuring that the Y chromosome concentration 
meets the standard requirements, and minimizing the potential risks of pregnant women [10]. 

3.2 Model solution based on NSGA-II 

NSGA-II is a popular multi-objective optimization algorithm. It is based on the genetic 
algorithm (GA) but uses a unique strategy to handle multi-objective problems, resulting in 
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higher efficiency than traditional GAs in multi-objective optimization. In this problem, it 
comprehensively considers factors such as BMI, height, weight, and age, while optimizing 
multiple conflicting objectives, including the time to reach target Y chromosome concentration, 
the risk of test failure, and the impact of errors. Through non-dominated sorting, elitist 
strategies, and crowding comparison, it finds multiple equilibrium solutions, demonstrating 
strong adaptability and robustness. 

 

Fig. 1 Principle of the NSGA-II model. 

3.2.1 Non－dominatedSorting 

The key to NSGA-II is non-dominated sorting. For two solutions x1 and x2, if x1 is not 
worse than x2  in all objectives and is better in at least one objective, then 𝑥𝑥1  is said to 
dominate x2. 

Dominance relationship: 
The objective function is 𝑓𝑓(x) = [𝑓𝑓1(x), 𝑓𝑓2(x), … , 𝑓𝑓𝑚𝑚(x)], where 𝑓𝑓𝑖𝑖(x) is the target value of 

solution x at the 𝑖𝑖-th target, and 𝑚𝑚 is the number of targets. The condition for solution x1 to 
dominate solution x2 is: 

 ∀𝑖𝑖 ∈ {1,2, … ,𝑚𝑚}, 𝑓𝑓𝑖𝑖(x1) ≤ 𝑓𝑓𝑖𝑖(x2),∃𝑗𝑗 ∈ {1,2, … ,𝑚𝑚}suchthat𝑓𝑓𝑗𝑗(x1) < 𝑓𝑓𝑗𝑗(x2)  (10) 

Non-dominated sorting: 
The goal of non-dominated sorting is to divide the entire population into different "Levels" 

or "fronts" based on dominance relationships. The first front contains all individuals that cannot 
be dominated by any other individual, the second front contains individuals that are 
dominated only by individuals in the first front, and so on. 

3.2.2 Crowding Distance 

In multi-objective optimization, we hope to distribute solutions as evenly as possible. To 
avoid crowding of solutions, NSGA-II introduces the crowding distance to evaluate the relative 
position of individuals in their frontier. 
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For an individual 𝑖𝑖 in a certain frontier, its crowding distance can be calculated by the 
following formula: 

 𝐶𝐶𝐷𝐷𝑖𝑖 = ∑  𝑚𝑚
𝑘𝑘=1 �

𝑓𝑓𝑘𝑘,𝑖𝑖+1−𝑓𝑓𝑘𝑘,𝑖𝑖−1
𝑓𝑓max
𝑘𝑘 −𝑓𝑓min

𝑘𝑘 �  (11) 

Where: 𝑓𝑓𝑘𝑘,𝑖𝑖+1 and 𝑓𝑓𝑘𝑘,𝑖𝑖−1 are the target values of the 𝑖𝑖 + 1th and 𝑖𝑖 − 1th individuals on 
target 𝑘𝑘  after sorting; 𝑓𝑓max

𝑘𝑘  and 𝑓𝑓min
𝑘𝑘  are the maximum and minimum values of target 𝑘𝑘 

respectively. 

3.2.3 Selection 

The selection operation of NSGA-II consists of two steps: 
(1) Non-dominated sorting: The population is divided into different levels according to the 

non-dominated sorting. 
(2) Crowding degree comparison: Within the same level, individuals with smaller 

crowding degrees are compared based on the crowding degree distance. The selection 
operation formula is: 

 𝑃𝑃𝑖𝑖 = �x𝑖𝑖  if x𝑖𝑖  belongs to the frontier 𝐹𝐹1
x𝑖𝑖selected according to the congestion, if it is the 𝑘𝑘 frontier 𝐹𝐹𝑘𝑘, k > 1  (12) 

3.2.4 GeneticOperators 

NSGA-II uses traditional genetic operations, including crossover, mutation, and elite 
selection. For crossover and mutation, NSGA-II typically uses the following operators: 
（1）Crossover 

The crossover operation is used to exchange genetic information between two parent 
individuals to generate offspring individuals. Commonly used crossover operators are binary 
crossover and simulated binary crossover (SBX). The generation process of the SBX operator 
can be expressed as:  

 
x𝑖𝑖′ = x𝑖𝑖 + 𝜆𝜆 ⋅ �x𝑖𝑖 − x𝑗𝑗�
x𝑗𝑗′ = x𝑗𝑗 + 𝜆𝜆 ⋅ �x𝑗𝑗 − x𝑖𝑖�

  (13) 

Where 𝜆𝜆 is a random number that controls the degree of crossover. 
（2）Mutation 

The mutation operation is used to make small random modifications to individuals to 
explore the solution space. The commonly used mutation operator is polynomial mutation, 
which is formulated as follows:  

 𝑥𝑥𝑖𝑖′ = 𝑥𝑥𝑖𝑖 + 𝛿𝛿 ⋅ (𝑥𝑥max − 𝑥𝑥min)  (14) 

Where 𝛿𝛿 is a random variable that controls the degree of variation, and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  
are the maximum and minimum values in the solution space. Figure 2 shows the distribution 
of solutions in the objective space during multi-objective optimization, using non-dominated 
sorting and congestion calculation. 
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Fig. 2 Non-dominated sorting and congestion calculation in multi-objective optimization. 

The left side of Figure 2 shows a schematic diagram of the dominance relationship, and 
the right side shows a schematic diagram of the congestion calculation. In the left figure, the 
red square (P1), green square (P2), blue square (P4), and other solutions (Gray dots) illustrate 
the distribution of solutions in the objective function space. P1 is the initial solution, P2 is the 
target solution, and P3, P4, and P5 are solutions obtained through the optimization process. 
The red arrow indicates the transition from P2 to P5, demonstrating that the optimization 
algorithm gradually approaches the ideal solution by continuously adjusting the weights of the 
solutions. 

  

Fig. 3 Iteration curve and Pareto front analysis. 

The left panel of Figure 3 shows the curves of the Spacing and Spread metrics as they 
change with the number of iterations. The Spacing metric (Blue line) indicates the uniformity 
of solutions; closer to 1, the more uniform the distribution of solutions. The Spread metric (Red 
line) measures the range of solutions in the target space; larger values indicate greater diversity. 
As shown in Figure 3, the Spacing metric decreases with increasing iterations, indicating that 
the distances between solutions are becoming more uniform. Meanwhile, the Spread metric 
fluctuates, but the overall trend is a gradual increase, indicating that the range of solutions is 
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increasing. The NSGA-II algorithm effectively expands the distribution of solutions for this 
problem, improving diversity. 

The right panel shows the Pareto frontier quality (HV metric) as the number of iterations 
changes. The red dots in the figure represent solutions at different iteration numbers, and the 
blue curve shows the changing trend of the frontier quality. As the number of iterations 
increases, the quality of the frontier gradually improves. From the marking points of G25, G50 
to G100, the HV index continues to increase, indicating that with the increase of generations, 
the quality of the solution set gradually approaches the ideal solution, and the optimization 
process gradually approaches the optimal frontier. 

3.3 Model solution results 

As can be seen from Table 1, there are significant differences in the optimal detection time 
points corresponding to different BMI groups. 

Table. 1 Model solution results. 

BMI range Number of samples Detection time 
[20.0,28.6) 58 24.72215 
[28.6,34.5) 806 23.74262 
[34.5,35.6) 76 24.93422 
[35.4,38.2) 105 22.162364 
[38.3,Inf) 44 18.626646 

Specifically, the optimal testing time for pregnant women with a BMI ≥ 38.3 was the 
earliest, at 18.63 weeks, while the optimal time for women with a BMI between 20.0 and 28.6 
was the latest, at 24.72 weeks. This result indicates that as BMI increases, the time at which fetal 
Y chromosome concentration reaches the standard tends to shift earlier, suggesting that 
pregnant women with a high BMI may need to schedule NIPT testing earlier to reduce the risk 
of test failure due to insufficient fetal DNA concentration. 

3.4 Error Analysis Based on Monte Carlo Perturbation Experiment 

In NIPT, the impact of testing error on test results is a critical issue. Testing error arises 
from various processes, including sample collection, DNA extraction, and sequencing. Such as 
these errors can affect the accurate measurement of fetal Y chromosome concentration, thereby 
impacting the selection of the optimal NIPT timing and the reliability of test results. Here, to 
quantitatively analyze the impact of error on NIPT timing, a Monte Carlo simulation 
experiment was conducted. By introducing error through multiple random sampling attempts, 
we simulated the optimal NIPT timing under varying error conditions and evaluated the 
impact of error on timing shifts.  

3.4.1 Impact of detection error on the optimal NIPT timing 

In NIPT, a 4% concentration threshold is set. When the fetal Y chromosome concentration 
reaches or exceeds this threshold, the fetus is considered to have met the standard. Therefore, 
the optimal NIPT timing refers to the time in pregnancy when the fetal Y chromosome 
concentration reaches this threshold.  

Ideally, the fetal Y chromosome concentration will gradually increase as the pregnancy 
progresses, and when it reaches 4%, it should be considered as the target point. The relationship 
between the fetal Y chromosome concentration and the gestational period is set as:  

 𝑌𝑌true(𝑡𝑡) = 𝑓𝑓(𝑡𝑡)  (15) 
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Where 𝑡𝑡 is the gestational time and 𝑌𝑌true(𝑡𝑡) is the true Y chromosome concentration of 
the fetus. 

According to the testing criteria, the optimal NIPT time point 𝑡𝑡optimal  is reached when 
𝑌𝑌true(𝑡𝑡) ≥ 4% . However, due to testing errors, the actual measured value 𝑌𝑌measured(𝑡𝑡)  may 
deviate from the true value 𝑌𝑌true(𝑡𝑡), resulting in a shift in the optimal NIPT time point 𝑡𝑡measured. 

3.4.2 Simulation steps 

(1) Define input parameters: including the true value of the fetal Y chromosome 
concentration 𝑌𝑌true , the standard deviation of the error 𝜎𝜎 , and the threshold for the 
concentration to reach the standard. 

(2) Generate random error: For each simulated sample, generate a random error term 𝜀𝜀 ∼
𝒩𝒩(0,𝜎𝜎2). 

(3) Calculate the measured value: Calculate the measured Y chromosome concentration 
𝑌𝑌measured = 𝑌𝑌true + 𝜀𝜀. 

(4) Calculate the time point of reaching the standard: Based on the measured value, 
calculate the time point 𝑡𝑡measured when the fetal concentration reaches 4%. 

(5) Repeat the simulation: Through multiple simulations, record the time point offset 
caused by the measurement error in each simulation. 

3.4.3 Deviation Analysis 

For each simulation result, the deviation Δ𝑡𝑡 = 𝑡𝑡measured − 𝑡𝑡optimal  between the measured 
time point and the true time point is calculated, and the distribution of the deviation is obtained 
through statistical analysis. 

3.4.4 Robustness analysis 

Robustness analysis assesses the stability of a model under varying error conditions. By 
varying the error standard deviation, 𝜎𝜎, we can observe how the optimal NIPT time point 
shifts as the error increases. Larger shifts indicate that the model is sensitive to error and lacks 
robustness. 

 Var(Δ𝑡𝑡) = 1
𝑁𝑁
∑  𝑁𝑁
𝑖𝑖=1 �Δ𝑡𝑡𝑖𝑖 − Δ𝑡𝑡�

2
  (16) 

If the deviation variance is large, it means that the error has a greater impact on the results, 
and the model is less robust. 

3.4.5 Sensitivity analysis 

Sensitivity analysis is used to identify factors that significantly influence the optimal NIPT 
timing. In this experiment, we analyzed the impact of parameters such as the standard 
deviation of the error, the Y chromosome concentration threshold, and the mother's height, 
weight, and age on the time to reach the target, assessing the sensitivity of these factors to the 
results. 
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Fig. 4 Detection performance robustness analysis. 

The sensitivity index of each parameter was calculated to assess its influence on the 
optimal NIPT timing. Table 2 shows the results of sensitivity analysis of the impact of various 
factors on the optimal detection time point. 

Table. 2 Sensitivity analysis. 

Index name BMI Age Height Weight 
Sensitivity 
coefficient 

0.1049 0.0462 0.0022 0.0007 

As can be seen, BMI has the highest sensitivity coefficient (0.1049), far exceeding that of 
other factors, indicating that BMI is the most critical variable influencing the optimal timing of 
NIPT testing. Age, with a sensitivity coefficient of 0.0462, while having some influence, is 
significantly lower than BMI. The sensitivity coefficients of height and weight are both close to 
zero, indicating that their influence on testing timing is negligible. This analysis further 
validates the rationale for using BMI as a stratification factor and provides quantitative support 
for prioritizing pregnant women with higher BMIs in clinical practice. 

4 CONCLUSION 

The NSGA-II-based optimal NIPT testing time model proposed in this paper 
comprehensively considers individual differences among pregnant women and testing errors, 
achieving a coordinated optimization of testing errors and maternal and childbirth risks. 
Experimental results demonstrate good convergence of the model solution process, continuous 
improvement in the quality of the Pareto frontier, and high accuracy and robustness of the 
output results across multiple BMI strata. Sensitivity analysis further confirmed BMI as a key 
influencing factor. Overall, the model can effectively solve complex multi-objective 
optimization problems and provide scientific recommendations for NIPT testing time in 
clinical practice. Future research could introduce more risk variables and adaptive 
optimization mechanisms to further enhance the model's clinical applicability and promotional 
value. 

REFERENCES 

[1] Servi J C Stevens, Wanwisa van Dijk, Nicole Y Souren, Merryn V E Macville, Guillaum
e van de Zande, Brigitte H W Faas... & Masoud Zamani Esteki. (2025). Clinically Irrelev
ant Terminal 16q21 Deletion Detected by NIPT Is Attributable to Inherited Fragility at F

http://www.istaer.online/
https://doi.org/10.71451/ISTAER2552


International Scientific Technical and Economic Research | ISSN: 2959-1309 | Vol.3, No.4, 2025 
www.istaer.online——Research Article 

53 
Chen et al., ISTAER. 2552 (2025)., 20 Oct 2025                    https://doi.org/10.71451/ISTAER2552 

RA16B..American journal of medical genetics. Part A, e64271. DOI: https://doi.org/10.1002
/ajmg.a.64271 

[2] Haoyu Wang, Xiaobing Yu & Xuming Wang. (2025). A multi-stage multi-task evolutionar
y algorithm for constrained multi-objective optimization. Information Sciences,721,122559-1
22559. DOI: https://doi.org/10.1016/j.ins.2025.122559Get rights and content 

[3] Guoqing Li, Yu Xin, Jun Niu, Zheng Wang, Jiacheng Chen & Fei Wu. (2026). Reinforce
ment learning assisted automatic niche selection for constrained multimodal multi-objective 
optimization. Expert Systems With Applications,297(PC),129458-129458. DOI: https://doi.or
g/10.1016/j.eswa.2025.129458 

[4] Xuecheng Wu, Qiongbing Xiong & Cizhen Yu. (2025). Multi-objective optimization of re
gional energy systems with exergy efficiency and user satisfaction dynamics. Sustainable 
Computing: Informatics and Systems, 48, 101213-101213. DOI: https://doi.org/10.1016/j.sus
com.2025.101213 

[5] Shuting Zhong, Shaochen Yang, Rulei Sun, Ruifeng Tian, Sichao Tan, Chaojun Deng & 
Bo Wang. (2026). Multi-objective optimization study of wire mesh mist eliminator based 
on RSM and NSGA-II. Annals of Nuclear Energy,226,111899-111899. DOI: https://doi.org/
10.1016/j.anucene.2025.111899 

[6] Pang, C., Zhao, T., Chen, G., Li, C., Li, Z., Busababodhin, P., & Pawara, P. (2025). Eart
hquake and blast recognition based on CEEMDAN multiscale fuzzy entropy and NSGAIII 
optimized 1D-CNN neural networks. Journal of Seismic Exploration, 34(1), 22-42. DOI: h
ttps://doi.org/10.36922/JSE025260029 

[7] Fan Gao. (2025). Optimization Model of Multicenter Distribution Logistics Network Based
 on NSGA-II. Journal of Advanced Manufacturing Systems, (prepublish). DOI: https://doi.o
rg/10.1142/S0219686727500090 

[8] Serena Wee, Daniel A Newman,Q Chelsea Song & Chen Tang. (2025). Reducing adverse 
impact by hiring on vocational interests: A pareto-optimal approach. The Journal of applie
d psychology. DOI: https://doi.org/10.1037/apl0001317 

[9] Gupta Kunal & Satyam Neelima. (2026). Enhancing Landslide Hazard Assessment Using 
Monte Carlo Simulations and Improved Soil Thickness Mapping in Uttarakhand, India. Na
tural Hazards Review, 27(1). DOI: https://doi.org/10.1061/NHREFO.NHENG-2449 

[10] Davide Marcato, Achille Giacometti, Amos Maritan & Angelo Rosa. (2025). Entropy of s
elf-avoiding branching polymers: Mean-field theory and Monte Carlo simulations. The Jour
nal of chemical physics, 163(14). DOI: https://doi.org/10.48550/arXiv.2506.22315  

http://www.istaer.online/
https://doi.org/10.71451/ISTAER2552
https://doi.org/10.1002/ajmg.a.64271
https://doi.org/10.1002/ajmg.a.64271
https://doi.org/10.1016/j.ins.2025.122559
https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S0020025525006929&orderBeanReset=true
https://doi.org/10.1016/j.eswa.2025.129458
https://doi.org/10.1016/j.eswa.2025.129458
https://doi.org/10.1016/j.suscom.2025.101213
https://doi.org/10.1016/j.suscom.2025.101213
https://doi.org/10.1016/j.anucene.2025.111899
https://doi.org/10.1016/j.anucene.2025.111899
https://doi.org/10.36922/JSE025260029
https://doi.org/10.36922/JSE025260029
https://doi.org/10.1142/S0219686727500090
https://doi.org/10.1142/S0219686727500090
https://doi.org/10.1037/apl0001317
https://doi.org/10.1061/NHREFO.NHENG-2449
https://doi.org/10.48550/arXiv.2506.22315

	1 INTRODUCTION
	2 RESEARCH FRAMEWORK AND BASIC ASSUMPTIONS
	3.1 Construction of multi-objective optimization model
	3.1.1 Decision variables
	3.1.2 Objective function
	3.1.3 Constraints

	3.2 Model solution based on NSGA-II
	3.2.1 Non－dominatedSorting
	3.2.2 Crowding Distance
	3.2.3 Selection
	3.2.4 GeneticOperators

	3.3 Model solution results
	3.4 Error Analysis Based on Monte Carlo Perturbation Experiment
	3.4.1 Impact of detection error on the optimal NIPT timing
	3.4.2 Simulation steps
	3.4.3 Deviation Analysis
	3.4.4 Robustness analysis
	3.4.5 Sensitivity analysis



