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Abstract: With the deepening of intelligent transformation in the
manufacturing industry, the die-casting industry faces an urgent need
to improve product quality, production efficiency, and stability.
Traditional trial-and-error process debugging methods relying on
manual experience are no longer adequate to meet this challenge.
Therefore, this research aims to construct an intelligent die-casting
system integrating quality prediction and parameter self-optimization
to achieve closed-loop optimization of the production process. First,
the system collects multi-source process parameters such as injections
and thermal parameters in the die-casting unit through an industrial
Internet of Things (IoT) architecture. Based on this, machine learning
algorithms such as XGBoost, random forest, and artificial neural
networks are compared and screened, successfully constructing a high-
precision quality prediction model with internal porosity as the core
indicator. Then, using this prediction model as a surrogate model, a
process parameter self-optimization strategy is developed, combining
a multi-objective genetic algorithm and a Bayesian optimization
strategy, to automatically seek multiple objectives such as quality,
efficiency, and energy consumption while meeting equipment and
process constraints. Experimental results show that this system can not
only effectively predict key quality characteristics, but the process
parameter combinations recommended by its self-optimization
module significantly improve the product qualification rate and reduce
the single-piece production cycle compared to traditional methods in
actual production. This study successfully combines data-driven
methods with the die-casting process mechanism, forming a complete
technical solution from perception and prediction to decision-making,
providing a theoretical model and system framework with practical
value for the digital and intelligent upgrading of die-casting
production.

Keywords: Intelligent die casting; Process parameter optimization;
Quality prediction; Machine learning; Digital twin

1 INTRODUCTION

With the increasing demand for lightweight, high-strength, and complex structural

castings in the high-end equipment manufacturing industry, die casting technology, as an

important means of precision forming, is facing unprecedented challenges and opportunities

in its process level. Traditional die casting production relies heavily on engineers' experience
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for process parameter debugging and quality control. This "trial and error method" is not only
time-consuming and costly but also makes it difficult to guarantee the stability and
repeatability of the forming process, which has become a key bottleneck restricting product
quality improvement and industrial intelligent transformation [1]. Against this background,
intelligent die casting units integrating industrial Internet of Things, big data analysis, and
artificial intelligence technologies have become an inevitable trend in the industry. By
constructing a process parameter self-optimization and quality prediction model, a paradigm
shift from "experience-driven" to "data-driven" can be achieved, which has significant
theoretical value and engineering practical significance for significantly improving the first-
pass yield of products, reducing production energy consumption and costs, and enhancing the
core competitiveness of my country's die casting industry [2].

Currently, scholars at home and abroad have carried out many beneficial explorations in
the field of die casting process optimization and quality prediction. In terms of process
parameter optimization, early studies mostly adopted the Taguchi method or response surface
methodology based on experimental design to establish static empirical models between
parameters and quality. Although these methods can reveal the main influencing factors, they
are difficult to characterize complex nonlinear relationships and have high experimental costs.
In the field of quality prediction modeling, traditional machine learning algorithms such as
regression analysis and support vector machines have been introduced to build prediction
models. However, these models often rely on sample data under ideal working conditions and
are not adaptable enough to the dynamic changes in the production site [3]. At the same time,
the application of the concept of intelligent manufacturing in the die casting field has begun to
emerge, mainly reflected in the initial realization of equipment automation and data acquisition
and monitoring systems. However, most existing systems are still at the stage of data
visualization and simple alarms and have not yet formed a closed-loop intelligent system that
deeply integrates real-time data, prediction models and optimization decisions [4]. Overall,
current research still has three significant shortcomings: First, quality prediction models and
process optimization strategies are often independent of each other and fail to form an effective
closed loop; second, most methods lack a systematic analysis of the inherent trade-offs in multi-
objective optimization; and third, existing solutions do not adequately consider the
adaptability and self-learning mechanism to dynamic changes in production conditions.

To address the research gaps, this study aims to develop an integrated intelligent die-
casting unit process parameter self-optimization and quality prediction system. The entire
technical approach follows a logical sequence of "data perception - model construction -
intelligent decision-making - system verification": First, the data flow architecture and process
characteristics of the intelligent die-casting unit are systematically analyzed to lay the data
foundation; then, a quality prediction model based on advanced machine learning algorithms
is developed to achieve accurate soft measurement of key quality indicators; on this basis, an
intelligent decision-making mechanism integrating the prediction model and multi-objective
optimization algorithms is studied to automatically find the optimal combination of process
parameters; finally, the effectiveness and advancement of the proposed method are
comprehensively evaluated through system prototype construction and experimental
verification. To clearly illustrate this research process, the subsequent sections of this paper are

structured as follows: Section 2 delves into the system architecture and quality characteristics
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of the intelligent die-casting unit; Section 3 elaborates on the construction process of the quality
prediction model; Section 4 focuses on the design of the process parameter self-optimization
strategy; Section 5 introduces the system implementation and experimental verification results;

and Section 6 summarizes the entire work and looks forward to future research directions.

2 INTELLIGENT DIE CASTING UNIT AND QUALITY CHARACTERISTIC
ANALYSIS

The intelligent die-casting unit is the physical basis for achieving process self-optimization
and quality prediction. Its core lies in transforming traditional isolated die-casting equipment
into an organic intelligent system through sensing, interconnection, and data analysis. The
architecture of this unit is usually composed of an execution layer, a sensing layer, a
transmission layer, and a decision layer. In the execution layer, the core equipment includes
die-casting machines with real-time data interfaces, melting furnaces, spraying robots, part-
removing robots, and online detection devices. These devices do not operate independently
but rather capture massive amounts of dynamic information in the production process in real
time through a rich sensor network deployed in the sensing layer-such as injection rod
displacement and pressure sensors, mold cavity temperature sensors, molten metal
thermocouples, and equipment status monitoring sensors [5]. Subsequently, the industrial IoT
gateway and protocol in the transmission layer are responsible for aggregating and integrating
these heterogeneous data into a unified data platform, forming a "data mirror" covering the
entire die-casting process, providing a unique and reliable data source for subsequent
modeling and optimization decisions.

In the complex physicochemical process of die casting, numerous process parameters are
intertwined and jointly determine the quality of the final product. Among them, the injection
process parameters directly dominate the filling and solidification behavior of the molten metal.
Such as slow injection speed affects the gas discharge efficiency inside the cavity, while
excessively fast injection speed may entrain gas and form turbulence; the magnitude of the
boosting pressure and the triggering timing play a decisive role in the internal density of the
casting [6]. At the same time, thermal process parameters constitute the environmental basis
for molding. The uniformity and stability of the mold temperature field not only affect the
filling fluidity but are also the main causes of shrinkage and hot cracking defects; the superheat
of the molten metal is directly related to its viscosity and solidification shrinkage rate. In
addition, auxiliary parameters such as spraying time indirectly affect the cooling rate and
surface quality by influencing the thickness and distribution of the release agent film on the
mold surface; the clamping force ensures the locking of the mold under high pressure injection,
which is a prerequisite for safe production and dimensional stability. Therefore, accurate
identification and monitoring of these key parameters is the first step in understanding and
controlling the die casting process.

The quality characteristics of die castings are a comprehensive manifestation of multiple
dimensions and scales. At the internal quality level, we mainly focus on porosity and shrinkage
defects caused by air entrapment or shrinkage. These defects severely weaken the mechanical
properties and airtightness of the product and usually require X-ray or cross-sectional
metallographic analysis for accurate evaluation. Appearance quality is directly manifested as
flow marks, cold shuts, and other defects on the casting surface, which are directly related to
the bonding ability of the solidification front at the molten metal front and the mold
temperature [7]. Dimensional accuracy is a key indicator for measuring the geometric
consistency of castings, and it is affected by a series of factors such as mold thermal balance,
ejection deformation, and fluctuations in process parameters. These quality characteristics do
not exist in isolation; they have profound and complex nonlinear relationships with the process
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parameters. Such as increasing the mold temperature to improve filling integrity may
exacerbate the shrinkage tendency of the casting; reducing the fast injection speed to reduce air
entrapment may lead to cold shut defects. This mutually restrictive relationship highlights the
limitations of single-parameter optimization.

Based on a systematic analysis of the intelligent die-casting unit data flow, key process
parameters, and quality characteristics, we can initially explore the mapping relationship
between the two. This relationship is the theoretical foundation for constructing a high-quality
prediction model and an efficient self-optimizing algorithm. Correlation analysis of historical
production data and expert experience show that fast injection speed and pressurization
pressure usually have a strong nonlinear relationship with internal porosity; the mold
temperature field distribution is also related to surface cold shut and dimensional shrinkage
[8]. This preliminary understanding of correlation not only guides the selection of feature
variables in the subsequent modeling process but also provides a physical background and
interpretability basis for understanding the black box prediction results of the model, ensuring
the deep integration of data-driven methods and die casting physical mechanisms, rather than
pure mathematical fitting.

3 CONSTRUCTION OF A DIE CASTING QUALITY PREDICTION MODEL
BASED ON MACHINE LEARNING

High-quality data is the cornerstone of all machine learning models. Therefore, the first
step in model building is to carefully preprocess and feature-engineer the raw data collected
from the intelligent die-casting unit. The raw data generally contains missing values caused by
instantaneous sensor failures and communication interruptions, as well as outliers caused by
production anomalies or operational errors. If these noises are not processed, they will
seriously mislead the learning direction of the model. We use box plots and clustering methods
based on statistics to detect outliers and combine them with process expert knowledge for
identification and correction. For missing values, we choose to delete them or fill them with
interpolation based on their randomness [9]. Subsequently, since the dimensions and numerical
ranges of different process parameters (such as temperature, pressure, and speed) are very
different, they must be transformed to a uniform scale through standardization or
normalization to avoid features of too large magnitude dominating model training and to
ensure the convergence speed and stability of the algorithm. In the feature engineering phase,
we comprehensively employ filtering, wrapping, and embedding methods to evaluate the
relevance and importance of each feature to the quality target (such as porosity). We also utilize
dimensionality reduction techniques such as principal component analysis to eliminate
multicollinearity, thereby extracting the most informative subset of key features for quality
prediction from the high-dimensional raw data. This not only improves model performance
but also effectively reduces the risk of overfitting.

After completing data preparation, the next core task is to select a suitable machine
learning algorithm for the complex nonlinear regression problem of die casting quality
prediction. This study selects four algorithms with excellent performance in the industrial field
for comparative research. Support Vector Machines (SVM) use kernel function techniques to
map low-dimensional nonlinear problems to a high-dimensional feature space, seeking an
optimal hyperplane to maximize the generalization ability of prediction, making it particularly
suitable for small sample data. Ensemble learning algorithms, including Random Forest (RF)
and XGBoost, effectively capture complex interaction effects in data by constructing multiple
weak learners (decision trees) and combining their outputs through voting or weighting. They
are also insensitive to outliers. XGBoost is particularly known for its efficient gradient boosting
mechanism and built-in regularization term [10]. Artificial Neural Networks (ANNSs) simulate
the connections between neurons in the human brain, constructing deep network structures
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containing input, hidden, and output layers. With their powerful representation learning
capabilities, they can theoretically approximate any complex nonlinear mapping relationship,
making them very suitable for handling the highly coupled "black box" characteristics between
parameters in the die-casting process.

After determining the candidate models, we proceed to the training, validation, and
refinement stages. First, the preprocessed dataset is divided proportionally into training,
validation, and test sets to ensure the fairness of model evaluation. On the training set, we
initially train SVM, RF, XGBoost, and ANN models. However, the default parameters of the
models often fail to achieve optimal performance, so hyperparameter tuning becomes a crucial
step [11]. We employ strategies such as grid search, random search, or more efficient Bayesian
optimization to systematically optimize core hyperparameters, including the penalty
coefficient C and kernel function parameters of SVM, the tree depth and number of trees in
random forest, the learning rate of XGBoost, and the hidden layer structure and dropout rate
of neural networks. The validation set is used to evaluate the model performance under
different parameter configurations, serving as a guide for tuning and monitoring in real time
whether the model overfits the training data.

After completing the hyperparameter tuning of each model, we use independent test sets
to conduct a final performance comparison. Evaluation metrics include not only mean squared
error (MSE), mean absolute error (MAE), and coefficient of determination (R?) to measure
prediction accuracy, but also the stability and robustness of model predictions. By comparing
the performance of each model on these metrics and considering engineering factors such as
training time and inference speed, we determine the model that achieves the best balance
between accuracy and efficiency as the "optimal prediction model" of this study [12]. Such as
XGBoost might perform well and offer slightly better interpretability on tabular data, while
ANNSs might have more potential in capturing deep nonlinear relationships.

Ultimately, the "black box" nature of a model designed to guide actual production is an
obstacle that needs to be overcome. Therefore, we need to conduct interpretability analysis on
the selected optimal model. For tree ensemble models, we can use feature importance ranking
to quantify the contribution of each process parameter to the final quality prediction; for neural
networks, we can use advanced interpretation tools such as SHAP and LIME to locally interpret
the model's decision-making basis by calculating the Shapley value of each feature for a single
predicted value. This analysis not only enhances our confidence in the model, but more
importantly, it connects data-driven predictions with the physical mechanisms of the die-
casting process, providing process engineers with intuitive insights, pointing to potential
directions for process optimization, and transforming machine learning models from simple
prediction tools into decision support systems that can guide production.

4 RESEARCH ON MULTI-OBJECTIVE SELF-OPTIMIZATION STRATEGY FOR
PROCESS PARAMETERS

After successfully constructing a high-precision quality prediction model, the next key
stage of this research is how to utilize this model to drive the die-casting process towards
autonomous optimization. This first requires precisely defining a complex engineering
requirement as a mathematical optimization problem. The ideal state of die-casting production
is not a single-dimensional extreme but rather requires finding the optimal balance among
multiple competing objectives. Therefore, we describe the self-optimization problem as finding
a set of optimal setpoints within a given space of process parameters. Its objective function is a
complex whole. The primary objective is to pursue the highest product quality, i.e., minimizing
the defect indicators (such as porosity) output by the prediction model; the second is to improve
production efficiency, which usually means shortening the cycle time as much as possible while
ensuring quality; and the last is to reduce production energy consumption, such as optimizing
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the power of the holding furnace and the load on the cooling system. However, this
optimization is not arbitrary; it must strictly adhere to a series of constraints, including hard
equipment capacity limits such as the maximum clamping force of the die-casting machine and
the maximum speed of the injection punch, as well as soft process windows determined by
material properties and mold design that ensure basic feasibility of molding. Any optimization
scheme must be carried out within the feasible region constituted by these boundaries.

To efficiently solve the complex non-convex, nonlinear optimization problems described
above, we designed an intelligent optimization strategy based on the quality prediction model.
This strategy uses the prediction model as a reliable "surrogate model" to evaluate the quality
and efficiency results produced by any set of process parameters, thus avoiding time-
consuming physical experiments. We focused on three optimization algorithms suitable for this
scenario: Genetic Algorithm simulates natural selection and genetic mutation, conducting
global exploration in the parameter space through crossover, mutation, and selection
operations of individuals in the population, effectively escaping local optima. Particle Swarm
Optimization (PSO), inspired by the social behavior of bird flocks, treats each candidate
solution as a particle, updating its position by tracking the individual's historical best and the
group's historical best, typically achieving fast convergence. Bayesian optimization takes a
different approach, actively guiding the search process by constructing a probabilistic
surrogate model of the objective function. It is particularly suitable for optimizing "black box"
functions with high evaluation costs (even with the prediction model, high-dimensional
parameter evaluation still requires computation), approaching the global optimum with the
fewest evaluations. These algorithms, each with their own advantages, together constitute a
powerful toolbox for finding optimal process formulations.

Because quality, efficiency, and energy consumption goals often involve a trade-off—such
as excessively high mold temperatures may improve quality but increase energy consumption
and cooling time—there is no single "unique solution" that is optimal for all objectives. Our
optimization solution aims to reveal the inherent trade-offs between these objectives, thereby
identifying a series of so-called "non-dominated solutions" or "Pareto optimal solutions.” For a
Pareto solution, any further improvement in any objective inevitably leads to the deterioration
of at least one other objective. All these Pareto optimal solutions constitute a surface or frontier
in a high-dimensional objective space, namely the "Pareto frontier." By analyzing the shape of
this frontier, production decision-makers can clearly understand the trade-off costs between
different objectives. Such as they can choose the compromise solution that best suits their
business strategy from the Pareto frontier based on the priority of current orders (whether
product strength or delivery speed is more important), thus achieving a fundamental shift from
"blindly adjusting machines" to "data-driven scientific decision-making."

Finally, to verify the effectiveness and practicality of the entire self-optimization strategy,
we conducted comprehensive testing in a simulation environment. By constructing a digital
simulation platform that includes a predictive model and process constraints, we simulated the
operational performance of the optimization algorithm in actual production. We compared the
optimal parameter combination recommended by the optimization algorithm with historical
empirical parameters to evaluate its improvement in the overall objective. Simultaneously, we
also verified whether the optimization results remained consistently within the constraints for
safe equipment operation. Simulation verification not only allows for the near-zero-cost
previewing of optimization effects and selection of the most suitable optimization algorithm
but also exposes potential flaws in strategy design. This provides crucial confidence and a solid
foundation for the final deployment of this self-optimizing system in a real die-casting unit,
completing an intelligent closed loop from prediction to decision-making.

5 SYSTEM IMPLEMENTATION AND EXPERIMENTAL VERIFICATION
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After completing the theoretical and algorithmic research, we integrated the quality
prediction model and parameter self-optimization strategy into a complete engineering system
and deployed it in a real industrial scenario for verification. The architecture of the entire
intelligent self-optimization system is centered on data flow and built using a layered and
decoupled approach. At the bottom layer, based on the Python ecosystem, we used the Flask
framework to build the system's backend service core, responsible for data processing, model
invocation, and optimization calculations. The front-end interface was developed using Vue.js,
providing process engineers with an intuitive interactive portal for parameter monitoring,
prediction result visualization, and optimization command issuance. The database used a
combination of the time-series database InfluxDB and the relational database MySQL,
efficiently handling real-time high-speed data from equipment operation and structured
process formulas and quality records, respectively. To ensure the system has sufficient testing
capabilities before being put into production, we also built an optional digital twin module.
This module is not an exact physical simulation but rather simulates the response of the die-
casting machine under given parameters and possible product quality outputs by integrating
historical data and mechanistic rules, providing a safe and low-cost sandbox environment for
subsequent testing and verification.

To scientifically evaluate system performance, we designed a comprehensive experimental
plan. Within a specified production cycle, for a typical die-cast part, we not only continuously
collected production data under normal system operation, but also proactively designed a
series of parameter combination experiments covering high and low levels within the safe
process window. This resulted in a rich and high-quality dataset encompassing both routine
production conditions and potential optimization space. This dataset was rigorously divided
into two parts: one part was used for the final offline accuracy verification of the trained quality
prediction model; the other part was used for online or semi-real-world optimization system
testing, i.e., running the self-optimization algorithm and executing its recommended parameter
settings on a real die-casting unit under the supervision of engineers.

In the core testing phase, we conducted dual verification of the model and the optimization
system. First, we conducted a final assessment of the accuracy of the quality prediction model.
We compared its prediction results on independent test sets with actual quality data obtained
from X-ray and coordinate measuring machine inspections, objectively evaluating its predictive
ability through quantitative indicators such as mean absolute percentage error, confirming its
suitability for guiding optimization. Next, we initiated a comparative analysis of the
effectiveness of the self-optimization strategy. Under identical initial production conditions, we
ran self-optimization systems based on different strategies, such as genetic algorithms and
Bayesian optimization, and compared the overall performance of the "optimal" parameter
combinations they found in actual production. We then selected the most stable and effective
optimization strategy as the core algorithm of the system.

Based on the test results, we conducted in-depth analysis and discussion. A crucial step
was a comprehensive comparison between the intelligent optimization system and the
traditional trial-and-error method relying on experienced operators. We compared the setup
time, material costs, and the stability and efficiency of the final solutions when achieving the
same quality goals. The results clearly show that the self-optimization system has significant
advantages in optimization speed, resource conservation, and the scientific nature of the
solution. Furthermore, we evaluated the system's stability and real-time performance during
long-term operation, monitoring its response latency and resource consumption when
continuously processing large amounts of real-time data and performing model inference and
optimization calculations. This ensured that it could meet production cycle requirements and
possess industrial-grade capability for continuous 24/7 reliable operation, thus demonstrating
the feasibility of the entire intelligent die-casting unit moving from theoretical conception to
production practice.
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6 CONCLUSIONS AND OUTLOOK

This research, focusing on the core needs of intelligent die-casting units, systematically
tackled the entire technological challenges, from data perception and model building to
optimization decision-making. By establishing an industrial IoT data acquisition system
covering the entire die-casting process, the complex mapping relationship between key process
parameters and multi-dimensional quality characteristics was clarified. Based on this, a quality
prediction model based on high-precision machine learning algorithms such as XGBoost and
neural networks was successfully developed, effectively achieving online soft measurement of
key quality indicators such as internal porosity. Furthermore, for the practical engineering
application of multi-objective optimization, the quality prediction model was innovatively used
as a surrogate model, integrating intelligent strategies such as genetic algorithms and Bayesian
optimization to construct a self-optimizing system for process parameters that automatically
seeks the optimal balance between quality, efficiency, and energy consumption. Final
experimental verification shows that this system not only significantly improves the first pass
yield and production efficiency but also transforms process debugging from an experience-
based trial-and-error mode to a data-driven scientific decision-making mode, providing a
practical and feasible technical path for the digital and intelligent transformation of die-casting
production.

The main innovations of this work are reflected in three aspects. Firstly, methodologically,
a deep integration of die-casting process mechanisms and data-driven algorithms was achieved.
Interpretive analysis revealed the physical meaning behind the model predictions, enhancing
the credibility and engineering guidance value of the results. Second, a complete closed loop
of "perception-prediction-optimization" was constructed, rather than simply focusing on
quality monitoring or prediction, truly achieving a leap from diagnosis to decision-making.
The trade-off analysis based on multi-objective Pareto fronts provides unprecedented flexibility
for production decisions. Finally, the overall system architecture design balances advancement
and practicality. The introduction of lightweight digital twin technology for simulation
verification reduces the risk of trial and error on expensive production equipment, paving the
way for industrial deployment.

While this research achieved its expected results, some limitations remain and require
further improvement. Current quality prediction models primarily rely on stable production
condition data; their generalization ability to strong interference factors such as sudden
equipment failures or drastic fluctuations in raw material batches still needs further testing.
Meanwhile, in the optimization process, to balance computational efficiency and global search
capability, the self-optimizing system sacrifices, to some extent, the possibility of thoroughly
exploring ultra-high-dimensional parameter spaces. The "optimal solution" it finds may have
even greater potential in a broader space. Furthermore, the system's real-time performance is
currently primarily reflected in minute-level batch optimization; it has not yet achieved
millisecond-level online real-time closed-loop control for each die-casting cycle. This would be
a crucial step towards a higher level of intelligence.

Looking ahead, this research can be further deepened in several directions. In the short
term, the next focus is on introducing an adaptive learning mechanism into the system,
enabling it to update and self-calibrate the model online based on new materials, new molds,
or equipment wear conditions, thereby possessing the ability to evolve in response to changes
in production conditions. In the medium term, exploring the combination of more advanced
Al algorithms such as reinforcement learning with physical simulation models holds promise
for training intelligent agents capable of coping with complex and ever-changing environments
in virtual space, further improving the robustness and foresight of the optimization strategy.
From a long-term perspective, the data foundation and decision-making capabilities built by
this system can be integrated upwards to the factory-level manufacturing execution system and
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management decision-making system, ultimately becoming a core component in building the
"industrial brain" of the die-casting industry, and driving the entire industrial chain to evolve
towards a new intelligent production model that is self-adaptive and self-decision-making.
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