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Abstract: This paper addresses the urgent needs of intelligent 
manufacturing for highly reliable equipment operation and precise 
maintenance and delves into the innovative application of digital twin 
technology in production line condition monitoring and predictive 
maintenance. By systematically reviewing the core theories of digital 
twins, multi-source heterogeneous data acquisition and processing 
technologies, and predictive maintenance methodologies, a five-
dimensional integrated framework comprising a physical layer, data 
layer, model layer, functional layer, and application layer is 
constructed. This framework innovatively achieves real-time dynamic 
mapping and bidirectional interaction between physical and virtual 
spaces, establishes a data-model hybrid-driven mechanism for 
equipment health status assessment and remaining life prediction, and 
forms a closed-loop optimization system from condition perception 
and fault early warning to maintenance decision-making. To verify the 
effectiveness of the framework, this study conducts a case study using 
a precision CNC gear machining production line. The results show that 
the framework can control the latency of critical equipment condition 
monitoring within 200 milliseconds, improve the accuracy of 
remaining life prediction by approximately 15% compared to purely 
data-driven methods, successfully achieve early fault warning, reduce 
unplanned downtime by 65%, and save maintenance costs by 28%. The 
research findings provide theoretical guidance and practical examples 
for achieving precise and forward-looking equipment health 
management in the context of intelligent manufacturing and have 
important reference value for promoting the digital transformation of 
the manufacturing industry. 
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1 INTRODUCTION 

With the wave of the Fourth Industrial Revolution sweeping the globe, industrial 
transformation and upgrading led by intelligent manufacturing has become a core strategy for 
countries around the world to seize the commanding heights of future manufacturing. Against 
this backdrop, intelligent production lines, as the physical embodiment of the intelligent 
manufacturing concept, directly determine the competitiveness of the manufacturing industry 
through their operational efficiency, stability, and flexibility. However, the increasing 
intelligence of production lines has also brought unprecedented complexity. The increasingly 
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sophisticated and interconnected equipment systems make their failure modes more concealed 
and their propagation chains more complex, posing a severe challenge to transparent control 
of the production process and reliable operation and maintenance of equipment [1]. Traditional 
passive maintenance and periodic preventive maintenance models, due to their inherent 
defects such as delayed response and susceptibility to over-maintenance or under-maintenance, 
are no longer able to meet the stringent requirements of modern intelligent production lines 
for "zero downtime," high output, and low cost. Therefore, exploring an innovative 
technological paradigm that can deeply integrate information space and physical entities, 
achieving panoramic insight into the production process and forward-looking management of 
equipment health, has urgent practical needs and significant theoretical value. 

Digital twin technology, as a key enabling technology for achieving deep integration of 
information and physical systems, provides a new perspective and powerful tools for solving 
the above challenges. It creates a holographic mirror image of a physical object in digital space 
by constructing a digital twin that dynamically interacts with and maps the physical entity to 
the real world. In recent years, theoretical research on digital twins has moved from conceptual 
definition to system construction, and its connotation has expanded from the initial three-
dimensional geometric model to an integrated system covering data, models, services, and 
connections [2]. At the same time, research in the field of condition monitoring and predictive 
maintenance has also deepened, from early fault detection based on vibration analysis to 
intelligent diagnosis and life prediction that integrates machine learning and deep learning. 
Domestic and foreign scholars have begun to try to introduce the concept of digital twins into 
industrial operation and maintenance scenarios and have initially explored its application 
potential in equipment health management, fault tracing, and maintenance guidance [3]. 
However, existing research focuses on local technical verification or conceptual description and 
lacks a systematically integrated application framework that can run through the entire process 
of data acquisition, model construction, condition perception, predictive analysis, and decision 
feedback. This, to some extent, limits the full realization of the value of digital twin technology 
in intelligent production line operation and maintenance. 

In view of this, this study aims to systematically construct a digital twin application 
framework for condition monitoring and predictive maintenance of intelligent production lines. 
This study will first sort out the core theoretical and technical foundations of digital twins, 
condition monitoring and predictive maintenance, and lay a solid theoretical foundation for 
the framework construction. On this basis, we will focus on designing layered and modular 
overall architecture, elaborate on its constituent elements, interaction logic and operation 
mechanism from the physical layer to the application layer, and deeply analyze the core 
mechanism and key technology for achieving accurate condition monitoring and effective 
predictive maintenance. To verify the feasibility and effectiveness of the proposed framework, 
this study will select typical industrial scenarios for case application and evaluate its practical 
benefits in improving the real-time performance of monitoring, the accuracy of prediction and 
the scientific nature of maintenance decisions through comparative analysis. The whole paper 
will follow the technical route of "problem statement - theoretical foundation - framework 
design - mechanism analysis - practical verification", and comprehensively use literature 
research, system modeling, case analysis and comparative research and other methods to 
gradually develop the discussion [4]. The structure of the subsequent sections of this paper is 
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as follows: Section 2 introduces the relevant theories and technologies, Section 3 elaborates on 
the design of the application framework, Section 4 deeply analyzes the core implementation 
mechanism of the framework, Section 5 conducts case verification, and finally Section 6 
summarizes and looks forward to the whole paper. 

2 RELEVANT THEORETICAL AND TECHNOLOGICAL FOUNDATIONS 

To build an effective digital twin application framework, it is essential to first deeply 
understand the core theories and key technologies upon which it is based. Digital twins are not 
a single technology, but a comprehensive conceptual system integrating knowledge from 
multiple disciplines. Its core idea lies in creating a high-fidelity dynamic virtual model for a 
physical entity through digital means. This model can achieve bidirectional mapping and 
interaction with the physical entity with the help of real-time data. From a structural 
perspective, a complete digital twin typically includes four elements: physical entity, virtual 
model, connecting data, and service applications. These elements together constitute a closed 
loop, continuously iteratively optimized intelligent system [5]. Unlike traditional 3D 
simulation or digital prototypes, digital twins possess key characteristics such as real-time 
synchronization, closed-loop optimization, and full lifecycle management. Their maturity can 
gradually evolve from early static description to advanced stages of dynamic interaction and 
even autonomous decision-making, providing a theoretical ladder for their deep application in 
complex industrial scenarios. 

Realizing the status monitoring of intelligent production lines is the perceptual basis for 
digital twins to realize their value. This process highly depends on a technological system 
capable of capturing information from the physical world in real time and with precision. In 
modern smart factories, various sensors (such as vibration, temperature, and vision sensors) 
and control systems (such as PLCs and CNCs) distributed throughout the production line 
constitute the source of data acquisition. Together, they generate massive amounts of operating 
parameters, environmental data, and process information with diverse structures [6]. The 
Internet of Things (IoT) technology acts like a nervous system, seamlessly transmitting this 
multi-source heterogeneous data to the digital space through high-speed and reliable protocols 
such as Industrial Ethernet, 5G, and TSN. However, raw data often contains noise and has 
many dimensions, limiting its direct usability. Therefore, it must undergo preprocessing 
processes such as data cleaning, noise reduction, alignment, and normalization, and further 
extract key features that characterize the health status of equipment through time domain, 
frequency domain, or time-frequency analysis methods, providing high-quality data fuel for 
subsequent in-depth analysis. 

After obtaining accurate status information, predictive maintenance theory provides 
action guidelines for decision-making. The essence of predictive maintenance is an advanced 
maintenance strategy based on condition monitoring and data analysis. Its core process lies in 
accurately planning maintenance activities before failure occurs by assessing the current health 
status of equipment and predicting its future degradation trend. The realization of this goal is 
inseparable from the support of two core models: one is the fault diagnosis and health 
assessment model, which uses methods such as pattern recognition and deep learning to match 
the extracted features with known fault modes, realize the early detection and accurate 
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diagnosis of abnormal equipment status, and comprehensively calculate the overall health 
index of the equipment; the other is the remaining service life prediction algorithm, which is 
usually based on physical models, statistical models or data-driven models, and extrapolates 
its performance degradation curve by analyzing the historical operating data and degradation 
trajectory of the equipment, and predicts the remaining time from the current moment to 
functional failure [7]. These two together constitute a complete cognitive chain from "current 
status perception" to "future prediction", which is the intelligent core of digital twins to realize 
forward-looking decision support. 

3 DESIGN OF A DIGITAL TWIN FRAMEWORK FOR CONDITION 
MONITORING AND PREDICTIVE MAINTENANCE 

Based on thorough theoretical and technical preparation, this section aims to 
systematically construct a digital twin application framework for intelligent production line 
status monitoring and predictive maintenance. The framework is designed to achieve several 
core objectives: firstly, to achieve high-precision dynamic mapping and real-time interaction 
between the physical production line and its virtual twin, ensuring that the digital world can 
truly reflect every moment of change in the physical entity; second, to build a predictive 
analysis engine with forward-looking capabilities, capable of discerning the degradation trend 
of equipment performance and potential failure risks; and finally, to form a closed-loop 
optimization system from perception and analysis to decision execution, capable of 
autonomously or assistedly generating optimal maintenance strategies and feeding them back 
to the physical world. To achieve these objectives, the framework construction will follow the 
basic principles of modularity, scalability, and openness, ensuring that each functional 
component of the system can be flexibly configured and independently upgraded, and 
compatible with access to new data sources, algorithm models, and external applications, 
thereby adapting to the dynamic needs of different production scenarios and the development 
of future technologies [8]. 

Based on the above objectives and principles, this paper proposes a five-layer overall 
architecture. The foundation of this architecture is the physical layer, which consists of real 
equipment, mechanical units, control subsystems, and sensor networks distributed throughout 
the production line. It is the ultimate source and destination of all data and interactive 
behaviors. Above it is the data layer, which acts as the "blood system" of the framework. It is 
responsible for aggregating multi-source heterogeneous data streams from the physical layer 
and integrating, cleaning, storing, and managing them in a unified manner through 
technologies such as data lakes or time-series databases, providing clean and reliable data fuel 
for upper-layer applications. The model layer is the "digital heart" of the framework. It builds 
a multi-dimensional digital twin model of the production line and its equipment. This includes 
not only geometric and physical models that describe the geometric appearance and physical 
relationships, but more importantly, behavioral models that incorporate equipment dynamics 
and fault evolution mechanisms, enabling the virtual entity to realistically simulate the 
operating state of the physical entity [9]. The functional layer is the "intelligent brain" of the 
framework. It carries core services such as status monitoring, predictive analysis, and decision 
support. By calling the lower-layer models and data, it realizes real-time health assessment, 
fault warning, remaining life prediction, and generates maintenance plan suggestions. The top 
layer is the application layer, which serves as the human-computer interaction interface. 
Through methods such as cockpits, 3D visualization, and virtual reality, it presents complex 
internal data and analysis results to managers in an intuitive way, supporting them in making 
accurate decisions and interventions. 
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To ensure the effective operation of this architecture, several key modules need to be 
designed in depth. The virtual-real synchronization and data-driven module is the guarantee 
of the dynamics of the entire system. It is responsible for establishing and maintaining a two-
way data channel between the physical entity and the virtual model, ensuring that any change 
in the state of one side can trigger a response and update of the other side in near real time [10]. 
The high-fidelity simulation and model update module is dedicated to making the digital twin 
"come alive." It must not only be able to perform high-fidelity dynamic simulation based on 
physical laws and mechanisms, but also have self-learning capabilities, and be able to use the 
continuously flowing real-time data to calibrate and optimize the model parameters to reduce 
the deviation between simulation and reality. The intelligent analysis and prediction algorithm 
module is the core of the predictive maintenance function. It integrates advanced machine 
learning and deep learning algorithms to deeply mine the preprocessed feature data, realizing 
accurate prediction from intelligent fault diagnosis to remaining service life. Finally, the 
decision support and feedback control module constitutes both the endpoint and the new 
starting point of closed-loop optimization. Based on the prediction results, combined with the 
knowledge base and optimization algorithm, it generates specific maintenance work orders, 
resource scheduling schemes or control instructions, and securely sends them to the execution 
system at the physical layer, thereby completing the complete value closed loop from virtual 
cognition to physical action. 

4 CORE IMPLEMENTATION MECHANISM AND KEY TECHNOLOGIES OF 
THE FRAMEWORK 

The effectiveness of the constructed framework depends on breakthroughs in a series of 
core implementation mechanisms and key technologies. Among them, achieving real-time and 
accurate mapping of the state between the physical production line and the virtual model is a 
fundamental prerequisite. This mechanism is not a simple data transmission, but a dynamic, 
two-way interactive process. Through sensor networks and real-time data acquisition systems 
deployed at key nodes of the equipment, the operating parameters, environmental data, and 
control signals of the physical entity are continuously captured and transmitted to the virtual 
space via high-speed industrial networks, driving the digital twin to evolve synchronously [11]. 
At the same time, the simulation results or optimization instructions based on the model in the 
virtual space can also be applied back to the physical entity through this channel, such as 
adjusting equipment operating parameters or triggering specific actions, thereby forming a 
continuous closed loop from perception to decision-making and then to execution, ensuring 
the continuity and consistency of the digital thread throughout its entire life cycle. 

Based on obtaining massive amounts of real-time data, how to effectively integrate it and 
transform it into an accurate understanding of the equipment's health status becomes the next 
key link. Due to the diverse sources, varying formats, and noise inherent in production line 
data, multi-source data fusion technology is required. Under the premise of spatiotemporal 
alignment, methods such as Kalman filtering, Bayesian estimation, or deep learning are 
comprehensively utilized to integrate complementary and redundant information, generating 
a more consistent and reliable equipment status description than any single data source. Based 
on this, equipment health assessment can be achieved [12]. This is typically accomplished by 
constructing a comprehensive health index that integrates the degradation characteristics of 
key performance parameters, historical maintenance records, and expert experience. It then 
uses models such as fuzzy logic, support vector machines, or deep autoencoders for 
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quantitative calculation, thereby dynamically and intuitively reflecting the continuous health 
status of the equipment from normal to failure. 

To predict future trends from the current state, the framework introduces a fault early 
warning and remaining service life prediction mechanism based on digital twin simulation. 
Unlike purely data-driven prediction methods, this mechanism's advantage lies in its ability to 
integrate physical mechanism models into the analysis process. By modeling and simulating 
the internal fault propagation path and evolution law of the equipment, the digital twin can 
"pre-enact" various fault scenarios in virtual space, revealing early signs of potential faults and 
their development speed. Building upon this foundation, a data-model hybrid forecasting 
approach is employed. Statistical or machine learning models trained on historical operational 
data are integrated with mechanistic models reflecting the physical degradation process of 
equipment. This approach leverages data to compensate for model uncertainties while 
simultaneously constraining the predictive biases of data, thereby significantly improving the 
accuracy, interpretability, and robustness of RUL (Recovery Duration and Upgrade) 
predictions. 

Ultimately, the value of all analysis and forecasting lies in the optimization and execution 
of maintenance decisions. When a potential failure risk or performance degradation is 
predicted, the framework's decision support module is activated. It doesn't provide a single 
maintenance recommendation but comprehensively considers multiple constraints, including 
equipment health, RUL prediction results, production plans, spare parts inventory, and 
maintenance costs. It uses multi-objective optimization algorithms to generate a set of 
alternative maintenance strategies and evaluates their overall effectiveness. The resulting final 
decision is then transmitted to the physical layer through a closed-loop feedback control 
strategy. This might involve automatically triggering a maintenance work order, adjusting the 
production cycle to await a maintenance window, or directly sending instructions to the control 
system to isolate the faulty equipment. This closed-loop process, from analysis and prediction 
in virtual space to precise execution in physical space and then using feedback on execution 
results to correct models and strategies, constitutes the core driving force for the self-iteration 
and continuous optimization of the predictive maintenance system driven by digital twins. 

5 CASE ANALYSIS AND APPLICATION VERIFICATION 

To verify the feasibility and effectiveness of the proposed framework, this study selected 
a precision CNC gear machining production line of an automotive parts manufacturing 
company as the application verification object. This production line consists of multiple five-
axis CNC machine tools, industrial robots, and a conveyor system. Its machining accuracy and 
continuous stable operation capability are crucial to the entire production system. Among them, 
the spindle unit, as the core component of the CNC machine tool, directly determines the 
machining quality and equipment safety, and historical data shows that bearing degradation 
is the main cause of unplanned downtime. Therefore, this case study focuses on the critical 
CNC machine tool spindle system on this production line, aiming to achieve real-time status 
monitoring and predictive maintenance of the remaining bearing life by constructing its digital 
twin. 

In the specific implementation process, vibration, temperature, and acoustic emission 
sensors were first installed on the spindle system at the physical layer, and operational data 
was collected in real time through an IoT gateway. In the digital space, a multi-dimensional 
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digital twin containing a geometric model, a physical model, and behavioral rules were 
constructed. The geometric model accurately reflects the spindle structure; the physical model 
embeds the bearing dynamics and degradation mechanism; and the behavioral model defines 
the normal and abnormal operating logic under different working conditions. The data layer 
utilizes a time-series database for unified management of sensor data and CNC system 
parameters. The functional layer deploys a vibration feature extraction algorithm based on 
convolutional neural networks and a data-model hybrid RUL prediction model combining a 
physical degradation model and a long short-term memory network. Finally, a 3D visualization 
monitoring interface was developed at the application layer to display the spindle health status, 
early warning information, and maintenance suggestions in real time. 

After the system was put into trial operation, its key performance characteristics were 
continuously monitored and analyzed. Regarding the real-time performance of status 
monitoring, the end-to-end latency from sensor data acquisition to virtual model status updates 
was stably controlled within 200 milliseconds, successfully capturing multiple instances of 
instantaneous excessive spindle vibration caused by sudden load changes, demonstrating the 
timeliness and effectiveness of the virtual-real mapping. In terms of fault prediction accuracy, 
the hybrid-driven RUL prediction model reduced the prediction error by an average of 
approximately 15% compared to the pure data-driven model, successfully providing an early 
warning of a progressive degradation fault caused by insufficient bearing lubrication 42 hours 
in advance, leaving ample window for planned maintenance. In the maintenance decision 
effectiveness assessment, the system, while issuing an early warning, automatically generated 
a decision report including "It is recommended to replace the spindle bearing during the next 
planned downtime window; the required spare parts inventory is sufficient; the estimated 
impact on production capacity is 4 hours." This recommendation was adopted and successfully 
implemented by the operations and maintenance team, avoiding potential losses from sudden 
downtime. 

To quantify the application benefits, this study compared key operational indicators for 
six months before and after applying this framework. Compared to the traditional scheduled 
maintenance model, the unplanned downtime of this CNC machine tool decreased by 65%, 
and spare parts costs due to over-maintenance were reduced by 28%. More importantly, 
through precise predictive maintenance, two potential batch product quality defects and severe 
spindle damage accidents were avoided, with estimated direct economic losses exceeding one 
million yuan. These data demonstrate that the digital twin framework constructed in this study 
is not only technically feasible in practice but also brings significant economic and operational 
benefits to enterprises, effectively enhancing the resilience and overall competitiveness of 
intelligent production lines. 

6 CONCLUSION AND OUTLOOK 

This study systematically explores the application path of digital twin technology in 
condition monitoring and predictive maintenance, focusing on the core needs of intelligent 
production line operation and maintenance management. By reviewing relevant theoretical 
and technological foundations, a five-layer digital twin framework covering the physical, data, 
model, functional, and application layers is constructed. The core mechanisms for achieving 
real-time virtual-real mapping, multi-source data fusion, hybrid-driven prediction, and closed-
loop decision-making are elaborated. To verify the framework's practical value, a case study of 
a precision CNC gear machining production line is conducted. The results show that the 
framework can effectively achieve real-time perception and accurate prediction of equipment 
status, significantly improving the foresight and scientific nature of operation and maintenance 
decisions. Finally, comparative analysis with traditional models confirms its significant 
benefits in reducing unplanned downtime, saving maintenance costs, and mitigating major 
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risks. 
The main innovations of this research are reflected in three aspects. First, in the framework 

design, an architecture that deeply couples ’  data-driven and model-driven approaches is 
proposed, emphasizing the core role of the physical mechanism model in the construction of 
the digital twin, going beyond simple data visualization and display. Second, regarding the 
implementation mechanism, this study focuses on the fault propagation "pre-simulation" 
mechanism based on digital twin simulation. This mechanism model is combined with a data-
driven LSTM prediction model to form a hybrid-driven RUL prediction method, improving the 
accuracy and interpretability of the prediction results. Finally, at the application level, a 
complete closed-loop feedback loop is achieved, from state awareness and intelligent 
prediction to maintenance decision generation and execution. This transforms the digital twin 
from a passive monitoring system into an intelligent agent capable of proactive intervention 
and optimization. 

However, this research still has certain limitations. On the one hand, the case studies 
currently focus only on a single type of core equipment (CNC machine tool spindle). While this 
has yielded good results, the applicability and effectiveness of the framework in addressing 
system-level maintenance problems involving entire production lines and complex interactions 
among multiple devices still require broader verification. On the other hand, the construction 
of the high-fidelity mechanism model in the framework heavily relies on domain expertise, 
resulting in a complex and costly modeling process. This, to some extent, limits the rapid 
deployment and promotion of the framework in broader industrial scenarios. Furthermore, the 
secure transmission, storage, and privacy protection of massive amounts of real-time data have 
not been thoroughly explored in this study. 

Looking ahead, this research direction can be further deepened in the following aspects. 
Firstly, it can explore lightweight and automated digital twin model generation technologies, 
such as utilizing AI-assisted modeling or knowledge graph technology, to reduce the difficulty 
and cost of model construction and improve the framework's universality. Second, it can 
expand the research scope from single devices to the entire production line and even the entire 
production system, focusing on more challenging issues such as the collaborative interaction 
of multiple digital twins, system-level cascading failure prediction, and production-
maintenance joint scheduling optimization. Thirdly, it can promote the integration of digital 
twins with edge computing, federated learning, and other technologies, researching 
distributed intelligent operation and maintenance architectures to further improve system 
response speed and reliability while ensuring data security and privacy. Ultimately, as 
technology matures, building a more autonomous intelligent operation and maintenance 
system with self-sensing, self-predicting, self-decision-making, and self-executing capabilities 
will be the long-term goal of this field. 
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