Research on MRI Object Detection Using an Enhanced YOLOv8 Framework

Authors

DOI:

https://doi.org/10.71451/ISTAER2551

Keywords:

YOLO; MRI; Deep learning; Comparative experiment; Image processing

Abstract

Early diagnosis and accurate localization of brain tumors are crucial for improving patient survival rates. Among these, automated detection methods based on deep learning have become a research hotspot. However, tumor detection, especially for complex shapes and small targets, remains challenging. To address this, this study proposes an improved YOLO model—YOLO-CDF—aimed at enhancing the detection accuracy for complex and small targets in brain tumor MRI images. The model builds upon YOLO by incorporating the BRASPPF module (A combination of bi-level routing attention mechanism and spatial pyramid pooling), dilated convolution, and small object detection layers. Experimental results show that the YOLOv8-CDF model achieves a good balance between precision and recall, with an overall mAP@0.5 of 0.929 and an F1 score reaching 0.90, demonstrating excellent detection performance. When detecting tumors, the model's precision values are 0.974, 0.964, and 0.851, respectively. Validation results show that the model can provide accurate predictions at both high and low confidence levels, with strong detection capabilities and good generalization ability, making a significant contribution to the identification of brain tumors.

References

[1] Deng, X., Huang, T., Wang, W., & Feng, W. (2025). SE-YOLO: A sobel-enhanced framework for high-accuracy, lightweight real-time tomato detection with edge deployment capability. Computers and Electronics in Agriculture, 239, 110973. DOI: https://doi.org/10.1016/J.COMPAG.2025.110973 DOI: https://doi.org/10.1016/j.compag.2025.110973

[2] Duan, C., Guo, Y., Duan, X., Li, G., & Sheng, B. (2025). DD-YOLO: A dual-channel dual-path YOLO network for target detection of blurred vehicles. Digital Signal Processing, 105565. DOI: https://doi.org/10.1016/J.DSP.2025.105565 DOI: https://doi.org/10.1016/j.dsp.2025.105565

[3] Murat, A. A., & Kiran, M. S. (2025). A comprehensive review on YOLO versions for object detection. Engineering Science and Technology, an International Journal, 70, 102161. DOI: https://doi.org/10.1016/J.JESTCH.2025.102161 DOI: https://doi.org/10.1016/j.jestch.2025.102161

[4] Zheng, Y., Jing, Y., Zhao, J., & Cui, G. (2024). LAM-YOLO: Drones-based Small Object Detection on Lighting-Occlusion Attention Mechanism YOLO. arXiv preprint arXiv:2411.00485. DOI: https://doi.org/10.1016/J.CVIU.2025.104489 DOI: https://doi.org/10.1016/j.cviu.2025.104489

[5] Gao, B., Tong, J., Fu, R., Zhang, Z., & Yuan, Y. Cbh-Yolo: A Steel Surface Defect Detection Algorithm Based on Cross-Stage Mamba Enhancement and Hierarchical Semantic Graph Fusion. Available at SSRN 5334461. DOI: https://doi.org/10.1016/J.NEUCOM.2025.131467 DOI: https://doi.org/10.1016/j.neucom.2025.131467

[6] Priya, S., & Amshakala, K. (2025). An adaptive fall detection system based on ensemble learning using variants of YOLO V8 retinanet and DETR. Scientific Reports, 15(1), 33161. DOI: https://doi.org/10.1038/S41598-025-97634-8 DOI: https://doi.org/10.1038/s41598-025-97634-8

[7] Mohamed, A., Nacera, Y., Ahcene, B., Teta, A., Belabbaci, E. O., Rabehi, A., ... & Benghanem, M. (2025). Optimized YOLO based model for photovoltaic defect detection in electroluminescence images. Scientific Reports, 15(1), 32955. DOI: https://doi.org/10.1038/S41598-025-13956-7 DOI: https://doi.org/10.1038/s41598-025-13956-7

[8] Zhou, W., Wang, J., Wang, J., Xi, M., Song, Y., & Liu, Z. (2024). Mp-Yolo: Multidimensional Feature Fusion Based Layer Adaptive Pruning Yolo for Dense Vehicle Object Detection Algorithm. Available at SSRN 4952235. DOI: https://doi.org/10.1016/J.JVCIR.2025.104560 DOI: https://doi.org/10.2139/ssrn.4952235

[9] Wang, Z., Zhou, W., & Li, Y. (2025). MSAF-YOLO: An Efficient Multi-Scale Attention Fusion Network for high-precision steel surface defect detection. Measurement, 118640. DOI: https://doi.org/10.1016/J.MEASUREMENT.2025.118640 DOI: https://doi.org/10.1016/j.measurement.2025.118640

[10] Zang, S., Hong, G., Liu, Y., Gan, H., Sun, F., & Lu, D. (2025). MCD-YOLO: An improved YOLOv8-based approach for surface defect detection of marine machinery components. Ocean Engineering, 341, 122624. DOI: https://doi.org/10.1016/J.OCEANENG.2025.122624 DOI: https://doi.org/10.1016/j.oceaneng.2025.122624

[11] Madadum, H., Nasir, F. E., & Haruehansapong, K. (2025). Optimizing Watermelon Leaf Disease Detection Using SAM-based Augmentation with YOLO for Practical Agricultural Solutions. Smart Agricultural Technology, 101326. DOI: https://doi.org/10.1016/J.ATECH.2025.101326 DOI: https://doi.org/10.1016/j.atech.2025.101326

[12] Yao, J., Li, Y., Xia, Z., Nie, P., Li, X., & Li, Z. (2025). WTAD-YOLO: A Lightweight Tomato Leaf Disease Detection Model Based on YOLO11. Smart Agricultural Technology, 101349. DOI: https://doi.org/10.1016/J.ATECH.2025.101349 DOI: https://doi.org/10.1016/j.atech.2025.101349

Downloads

Published

2025-10-12

Issue

Section

Research Article

How to Cite

Research on MRI Object Detection Using an Enhanced YOLOv8 Framework. (2025). International Scientific Technical and Economic Research , 34-42. https://doi.org/10.71451/ISTAER2551

Similar Articles

1-10 of 41

You may also start an advanced similarity search for this article.